75 research outputs found

    Phytochrome-Based Extracellular Matrix with Reversibly Tunable mechanical Properties

    No full text
    Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength‐specific, and dose‐ and space‐controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell‐compatible red/far‐red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics‐inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots

    Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical environment

    Get PDF
    Objective: To assess the microstructure of the collagen and elastin fibres in articular cartilage under different natural mechanical loading conditions and determine the relationship between the microstructure of collagen and its mechanical environment. Method: Articular cartilage specimens were collected from the load bearing regions of the medial femoral condyle and the medial distal humerus of adult kangaroos. The microstructure of collagen and elastin fibres of these specimens was studied using laser scanning confocal microscopy (LSCM) and the orientation and texture features of the collagen were analysed using ImageJ. Results: A zonal arrangement of collagen was found in kangaroo articular cartilage: the collagen fibres aligned parallel to the surface in the superficial zone and ran perpendicular in the deep zone. Compared with the distal humerus, the collagen in the femoral condyle was less isotropic and more clearly oriented, especially in the superficial and deep zones. The collagen in the femoral condyle was highly heterogeneous, less linear and more complex. Elastin fibres were found mainly in the superficial zone of the articular cartilage of both femoral condyle and distal humerus. Conclusions: The present study demonstrates that the collagen structure and texture of kangaroo articular cartilage is joint-dependent. This finding emphasizes the effects of loading on collagen development and suggests that articular cartilage with high biochemical and biomechanical qualities could be achieved by optimizing joint loading, which may benefit cartilage tissue engineering and prevention of joint injury. The existence of elastin fibres in articular cartilage could have important functional implications

    Inter- and intraobserver reliability of the MTM-classification for proximal humeral fractures: A prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A precise modular topographic-morphological (MTM) classification for proximal humeral fractures may address current classification problems. The classification was developed to evaluate whether a very detailed classification exceeding the analysis of fractured parts may be a valuable tool.</p> <p>Methods</p> <p>Three observers classified plain radiographs of 22 fractures using both a simple version (fracture displacement, number of parts) and an extensive version (individual topographic fracture type and morphology) of the MTM classification. Kappa-statistics were used to determine reliability.</p> <p>Results</p> <p>An acceptable reliability was found for the simple version classifying fracture displacement and fractured main parts. Fair interobserver agreement was found for the extensive version with individual topographic fracture type and morphology.</p> <p>Conclusion</p> <p>Although the MTM-classification covers a wide spectrum of fracture types, our results indicate that the precise topographic and morphological description is not delivering reproducible results. Therefore, simplicity in fracture classification may be more useful than extensive approaches, which are not adequately reliable to address current classification problems.</p

    Successful staged hip replacement in septic hip osteoarthritis in osteopetrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteopetrosis is a rare, inherited, bone disorder, characterized by osteosclerosis, obliteration of the medullary cavity and calcified cartilage. The autosomal dominant form is compatible with a normal life span, although fractures often result from minimal trauma, due to the pathologic nature of bone. Osteomyelitis is common in patients with osteopetrosis because of a reduced resistance to infection, attributed to the lack of marrow vascularity and impairment of white cell function. Only one case of osteomyelitis of the proximal third of the femur has been previously reported, treated with several repeated debridements and finally with femoral head resection. Here we present for the first time a case of a staged implant of a cementless total hip prosthesis for the treatment of a septic hip in femoral neck nonunion in osteopetrosis.</p> <p>Case presentation</p> <p>A 36-years-old woman, affected by autosomal dominant osteopetrosis was referred to our department because of a septic hip arthritis associated with femoral neck septic non-union, with draining fistulas. The infection occurred early after a plate osteosynthesis for a closed perthrocanteric fracture of the femur and persisted in spite of osteosynthesis removal, surgical debridement and external fixation. In our hospital the patient underwent accurate debridement, femoral head and greater trochanter resection, preparation of the diaphyseal intramedullary canal and implant of an antibiotic-loaded cement spacer. The spacer was exchanged after one month, due to infection recurrence and four months later, a cementless total hip arthroplasty was implanted, with no clinical and laboratory signs of infection recurrence at two years follow-up.</p> <p>Conclusions</p> <p>In case of hip septic arthritis and proximal femur septic non-union, femoral head resection may not be the only option available and staged total hip arthroplasty can be considered.</p

    Early evaluation and value-based pricing of regenerative medicine technologies.

    No full text
    Since the first pioneering scientists explored the potential of using human cells for therapeutic purposes the branch of regenerative medicine has evolved to become a mature industry. The focus has switched from &#39;what can be done&#39; to &#39;what can be commercialized&#39;. Timely health economic evaluation supports successful marketing by establishing the value of a product from a healthcare system perspective. This article reports results from a research project on early health economic evaluation in collaboration with developers, clinicians and manufacturers. We present an approach to determine an early value-based price for a new treatment of cartilage defects of the knee from the area of regenerative medicine. Examples of using evaluation results for the purpose of business planning, market entry, preparing the coverage decision and managed entry are discussed

    Injury-induced chondrocyte death can be alleviated by CCN2, a 'novel' regulator of cartilage homeostasis

    No full text
    corecore