25 research outputs found

    Positivity and Intensity of Gnathostoma spinigerum Infective Larvae in Farmed and Wild-Caught Swamp Eels in Thailand

    Get PDF
    From July 2008 to June 2009, livers of the swamp eels (Monopterus alba) were investigated for advanced third-stage larvae (AL3) of Gnathostoma spinigerum. Results revealed that 10.2% (106/1,037) and 20.4% (78/383) of farmed eels from Aranyaprathet District, Sa Kaeo Province and those of wild-caught eels obtained from a market in Min Buri District of Bangkok, Thailand were infected, respectively. The prevalence was high during the rainy and winter seasons. The infection rate abruptly decreased in the beginning of summer. The highest infection rate (13.7%) was observed in September and absence of infection (0%) in March-April in the farmed eels. Whereas, in the wild-caught eels, the highest rate (30.7%) was observed in November, and the rate decreased to the lowest at 6.3% in March. The average no. (mean±SE) of AL3 per investigated liver in farmed eels (1.1±0.2) was significantly lower (P=0.040) than those in the caught eels (0.2±0.03). In addition, the intensity of AL3 recovered from each infected liver varied from 1 to 18 (2.3±0.3) in the farmed eels and from 1 to 47 (6.3±1.2) in the caught eels, respectively. The AL3 intensity showed significant difference (P=0.011) between these 2 different sources of eels. This is the first observation that farmed eels showed positive findings of G. spinigerum infective larvae. This may affect the standard farming of the culture farm and also present a risk of consuming undercooked eels from the wild-caught and farmed eels

    Molecular identification of Cryptosporidium spp. in seagulls, pigeons, dogs, and cats in Thailand

    No full text
    Zoonotic Cryptosporidium spp., particularly C. meleagridis, C. canis, and C. felis, are enteric protozoa responsible for major public health concerns around the world. To determine the spread of this parasite in Thailand, we conducted molecular identification of Cryptosporidium spp. from animal samples around the country, by collecting and investigating the feces of seagulls (Chroicocephalus brunnicephalus and Chroicocephalus ridibundus), domestic pigeons (Columba livia domestica), dogs, and cats. Seagull and pigeon samples were collected at the seaside and on the riverside to evaluate their potential for waterborne transmission. Ten pigeon samples were combined into one set, and a total of seven sets were collected. Seventy seagull samples were combined into one set, and a total of 13 sets were collected. In addition, 111 dog samples were collected from cattle farms, and 95 dog and 80 cat samples were collected from a temple. We identified C. meleagridis in pigeons, Cryptosporidium avian genotype III in seagulls, C. canis in dogs, and C. felis in cats. In the temple, the prevalence was 2.1% (2/95) for dogs and 2.5% (2/80) for cats. No Cryptosporidium was found in dog samples from cattle farms. These are the first findings of C. meleagridis in domestic pigeons, and Cryptosporidium avian genotype III in seagulls. Our study invites further molecular epidemiological investigations of Cryptosporidium in these animals and their environment to evaluate the public health risk in Thailand

    Molecular identification of

    No full text
    Zoonotic Cryptosporidium spp., particularly C. meleagridis, C. canis, and C. felis, are enteric protozoa responsible for major public health concerns around the world. To determine the spread of this parasite in Thailand, we conducted molecular identification of Cryptosporidium spp. from animal samples around the country, by collecting and investigating the feces of seagulls (Chroicocephalus brunnicephalus and Chroicocephalus ridibundus), domestic pigeons (Columba livia domestica), dogs, and cats. Seagull and pigeon samples were collected at the seaside and on the riverside to evaluate their potential for waterborne transmission. Ten pigeon samples were combined into one set, and a total of seven sets were collected. Seventy seagull samples were combined into one set, and a total of 13 sets were collected. In addition, 111 dog samples were collected from cattle farms, and 95 dog and 80 cat samples were collected from a temple. We identified C. meleagridis in pigeons, Cryptosporidium avian genotype III in seagulls, C. canis in dogs, and C. felis in cats. In the temple, the prevalence was 2.1% (2/95) for dogs and 2.5% (2/80) for cats. No Cryptosporidium was found in dog samples from cattle farms. These are the first findings of C. meleagridis in domestic pigeons, and Cryptosporidium avian genotype III in seagulls. Our study invites further molecular epidemiological investigations of Cryptosporidium in these animals and their environment to evaluate the public health risk in Thailand
    corecore