34 research outputs found

    Plio-quaternary evolution of the Kucuk Menderes Graben southwestern Anatolia, Turkey

    Get PDF
    The Kucuk Menderes Graben (KMG) is part of the horst-graben system of southwestern Anatolia (Turkey), bounded by the Bozdag horst in the north and the Aydin horst in the south. The Plio-Quatemary evolution of the KMG has been evaluated using the nature of the Miocene-Quaternary fill sediments and palaeostress analysis of slip data measured in different parts of the graben

    The origin of the fluids circulating over the Amik Basin (Turkey) and their relationships with the Dead Sea Fault

    Get PDF
    The Amik Basin is an asymmetrical composite transtensional basin developed between the seismically active left-lateral Dead Sea Fault (DSF) splays and the left-lateral oblique-slip Karasu Fault segment during neotectonic period. The relationship between the DSF and the East Anatolian Fault Zone is important as it represents a triple junction between Arabian Plate, African Plate and Anatolian Block in which the Amik Basin developed. The basin was formed on a pre-Miocene basement consisting of two rock series: Paleozoic crustal units with a Mesozoic allochthonous ophiolitic complex and ~1300 m thick Upper Miocene-Lower Pliocene sedimentary sequence. Plio-Quaternary sediments and Quaternary volcanics unconformably overlie the deformed and folded Miocene beds. Quaternary alkali-basaltic volcanism, derived from a metasomatized asthenospheric or lithospheric mantle, is most probably related to the syn-collisional transtensional strike-slip deformation in the area. Active faults in the region have the potential to generate catastrophic earthquakes (M>7). Nineteen samples of cold and thermal groundwaters have been collected over the Amik Basin area for dissolved gas analyses as well as two samples from the gas seeps, and one bubbling gas from a thermal spring Samples were analysed for their chemical and isotopic (He, C) composition. On the basis of their chemical composition, three main groups can be recognized. Most of the dissolved gases (16; Group I) collected from springs or shallow wells (< 150 m depth), contain mainly atmospheric gasses with very limited H2 (< 80 ppm) and CH4 (1– 2700 ppm) contents and minor concentrations of CO2 (0.5–11.2 %). The isotopic composition of Total Dissolved Carbon evidences a prevailing organic contribution with possible dissolution of carbonate rocks. However the CO2-richest sample shows a small but significant deep (probably mantle) contribution which is also evidenced by its He isotopic composition. Further three samples, taken from the northern part of the basin close to Quaternary volcanic outcrops and main tectonic structures, also exhibit a small mantle He contribution (Fig. 1). The two dissolved gases (Group II) collected from deep boreholes (> 1200 m depth) are typical of hydrocarbon reservoirs being very rich in CH4 (> 78 %) and N2 (> 13%). The water composition of these samples is also distinctive of saline connate waters (Cl- and B-rich, SO4-poor). Isotopic composition of methane (δ13C ~ -65‰) indicates a biogenic origin while He-isotopic composition points to a prevailing crustal signature for one (R/Ra 0.16) of the sites and a small mantle contribution for the other (R/Ra 0.98) (Fig. 1). The three free gas samples (Group III), taken at two sites within the ophiolitic basement west of the basin, have the typical composition of gas generated by low temperature serpentinisation processes with high hydrogen (37–50 %) and methane (10–61 %) concentrations. While all three gases show an almost identical δD-H2 of ~ -750‰, two of them display an isotopic composition of methane (δ13C ~ -5‰; δD ~ -105‰) and a C1/[C2+C3] ratio (~100) typical of abiogenic hydrocarbons and a significant contribution of mantle-type helium (R/Ra: 1.33). The composition of these two gasses is comparable to that of the gasses issuing in similar geologic conditions (Chimera-Turkey, Zambales-Philippine and Oman ophiolites). The gas composition of the other site evidences a contribution of a crustal (thermogenic) component (δ13C-CH4 ~ -30‰; δD-CH4 ~ -325‰; C1/[C2+C3] ~ 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07) (Fig. 1). These first results highlight contributions of mantle-derived volatiles possibly drained towards shallow levels by the DSF and other parallel structures crossing the basin showing a tectonic control of the fluids circulating within the Basin

    Geochemistry of free and dissolved gases in the Amik basin area (Turkey) and its relationships with the tectonic setting

    Get PDF
    Twenty-two gas samples were collected in August 2012 in the area of Amik basin (Turkey). Two samples were collected from gas seeps, one was a bubbling gas in a thermal spring, while the remaining were dissolved gases from cold and thermal groundwaters (T 16-43 °C). All gases were analysed for their chemical composition (He, H2, O2, N2, CH4 and CO2) and for their He isotopic composition. Dissolved gases were also analysed for the carbon isotopic composition of the total dissolved carbon (TDC), while free gases also for their higher hydrocarbon (C1 – C5) content and for D of H2 and CH4, 13C of CH4 Basing on their chemical composition, the gases can be roughly subdivided in three groups. Most of the dissolved gases (16) belonging to the first group were collected from springs or shallow wells (< 150 m depth). All these samples contain mainly atmospheric gasses with very limited H2 (< 80 ppm) and CH4 (1 – 2700 ppm) contents and minor concentrations of CO2 (0.5 – 11.2 %). The isotopic composition of TDC evidences an almost organic contribution. The only exception is represented by the CO2-richest sample where a small but significant mantle contribution is found. Such contribution can also be evidenced in its 3He rich isotopic composition. Further three samples of this group evidence a small mantle contribution. These samples were collected in the northern part of the basin along the main tectonic structures delimiting the basin and close to areas with quaternary volcanic activity. A second group is composed by two dissolved gases collected from deep boreholes (> 1200 m depth). Their composition is typical of hydrocarbon reservoirs being very rich in CH4 (> 78 %) and N2 (> 13%). Also the water composition is typical of saline connate waters (Cl- and B-rich, SO4-poor). C-isotopic composition of methane ( 13C -65% ) points to a biogenic origin while He-isotopic composition indicates a prevailing crustal signature for one (R/Ra 0.16) of the sites and small mantle contribution for the other (R/Ra 0.98). To the last group belong four gas samples taken at two sites within the ophiolitic basement that crops out west of the basin. These gases have the characteristic composition of gas generated by low temperature serpentinisation processes with high hydrogen (37 – 50 %) and methane (10 – 61 %) concentrations. While all gases show an almost identical D-H2 of -750h those of one of the two sites display an isotopic composition of methane ( 13C -5h D -105% ) and a C1/[C2+C3] ( 100) ratio typical of abiogenic hydrocarbons and mantle-type helium (R/Ra: 1.33), while those of the other site evidence a contribution of a crustal (thermogenic) component ( 13C-CH4 -30h D -325h C1/[C2+C3] 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07). The preliminary results highlight contributions of mantle-derived volatiles to the fluids vented along the Amik Basin. The main tectonic structure of the area, the Death Sea Fault, and other parallel structures crossing the basin seem to be the responsible for deep-originated volatiles drainage towards shallow levels

    Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdag Horst

    No full text
    Western Anatolia (Turkey) is a region of widespread active N-S continental extension that forms the eastern part of the Aegean extensional province. The extension in the region is expressed by two distinct/different structural styles, separated by a short-term gap: (1) rapid exhumation of metamorphic core complexes along presently low-angle ductile-brittle normal faults commenced by the latest Oligocene-Early Miocene period, and; (2) late stretching of crust and, consequent graben evolution along Plio-Quatemary high-angle normal faults, cross-cutting the pre-existing low-angle normal faults. However, current understanding of the processes (tectonic quiescence vs N-S continental compression) operating during the short-time interval is incomplete. This paper therefore reports the results of recent field mapping and structural analysis from the NE of Kucuk Menderes Graben-Kiraz Basin-that shed lights on the processes operating during this short-time interval. The data includes the thrusting of metamorphic rocks of the Menderes Massif over the Mio-Pliocene sediments along WNW-ESE-trending high-angle reverse fault and the development of compressional fabrics in the metamorphic rocks of the Menderes Massif. There, the metamorphic rocks display evidence for four distinct phases of deformation: (1) south-facing top-N ductile fabrics developed at relatively high-grade metamorphic conditions, possibly during the Eocene main Menderes metamorphism (amphibolite facies) associated with top-N thrust tectonics (D-1); (2) top-S and top-N ductile gentle-moderatley south-dipping\ extensional fabrics formed at relatively lower-grade metamorphic (possibly greenschist facies) conditions associated with the exhumation of Menderes Massif along presently low-angle normal fault plane that accompanied the first phase of extension (D,); (3) moderately north-dipping top-S ductile-brittle fabrics, present configuration of which suggest a thrust-related compression (D-3); and (4) south-facing approximately E-W-trending brittle high-angle normal faults (D-4) that form the youngest structures in the region. It is interpreted that D-4 faults are time equivalent of graben-bounding major high-angle normal faults and they correspond to the second phase of extension in western Anatolia. The presence of thrust-related D3 compressional fabrics suggests N-S compression during the time interval between the two phases of extension (D-2 and D-4). The results of the present study therefore support the episodic, two-stage extension model in western Anatolia and confirm that a short-time, intervening N-S compression separated the two distinct phases. (c) 2005 Lavoisier SAS. All rights reserved

    High-altitude Plio-Quaternary fluvial deposits and their implication on the tilt of a horst, western Anatolia, Turkey

    No full text
    This study investigates the origin and regional tectonic implications of high-altitude Plio (?)-Quaternary fluvial deposits developed over the Bozdak horst which is an important structural element within the horst-graben system of western Anatolia, Turkey. A total of 23 deposits occur near the modem drainage divide comprising fluvial to occasionally lacustrine deposits. The deposits are all elongated in N-S direction with a width/length ratio of 1/10. The largest of them is of 13 km in length with a maximum observable thickness of about 100-110 m. Morphological, lithological, deformational characteristics of these deposits and the drainage system of the area all suggest that the deposits were formed due to uplift and southward tilting of the Bozdag horst. This tilting which is estimated as 1.2 degrees to 2.2 degrees caused accumulation of the stream load along channels flowing from south to north. All the deposits were later dissected by the same streams with the exception of one deposit which still preserves its original lake form. These deposits are of Quaternary age, which corresponds to the latest N-S directed extensional tectonic phase in the region

    Paleomagnetic rotations in the Late Miocene sequence from the Çankırı Basin (Central Anatolia, Turkey): the role of strike-slip tectonics.

    No full text
    In this paper, new paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from Miocene continental units of the Çankırı Basin are presented, with the main goal of providing additional constraints on its deformational and rotational history during the Late Cenozoic. AMS data indicate a tectonic origin for the magnetic fabric, suggesting that Upper Miocene units were still involved in the deformation processes. Paleomagnetic data show that tectonic rotations in the Çankırı Basin do not show a symmetrical distribution along the opposite edges of the basin, as expected from the observed Ω-shape. In particular, by combining our data with those already published, we observe that tectonic rotations increase from the southern portion of the basin toward the north and from the central part toward the basin margins. This distribution reasonably matches with a post-Late Miocene reactivation of the Çankırı Basin margin fault systems, possibly related to the activity of the right-lateral North Anatolian strike-slip fault. In this tectonic interpretation, the complex pattern of paleomagnetic rotations appears to be connected with a local block rotation mechanism due to the activity of faults with strike-slip components of motion along the tectonic margins of the Çankırı Basin

    Noble gases and rock geochemistry of alkaline intraplate volcanics from the Amik and Ceyhan-Osmaniye areas, SE Turkey.

    No full text
    The SE part of Turkey is characterized by a transtensional regime within the complex collision zone between the Anatolian, Arabian and African plates, which is bounded by two main faults, Dead Sea Fault and its splays on east and the Karasu Fault on west. In this tectonic and geodynamic context developed the Amik and further North, Erzin and Toprakkale districts, which are located onshore the Iskenderun Gulf, with the occurrence of a widespread and young alkaline volcanism dated from 1.57 to 0.05 Ma in Amik, and 2.25 to 0.61 Ma in Toprakkale. Here we present the results of a petrochemical and noble gases (HeAr) study performed in basalts and basanites from the Basins in order to constrain the features of the mantle source. The major and trace elements composition indicate that the involved mafic melts could be the result of 0.8–2% partial melting of a predominantly spinel and garnet + spinel mantle, which has typical features of intra-plate OIB magmatism. The 4He/40Ar* ratios display two distinct ranges, roughly 1, for basalts and basanites respectively. The 3He/4He ratio of fluid inclusions in olivine crystals ranges from 7.29 to 8.03 Ra (being Ra the atmospheric 3He/4He ratio of 1.39 × 10− 6), which implies a rather homogenous helium isotope signature of the mantle source. Such values are commonly recorded in MORB-like reservoirs (namely 8 ± 1 Ra), confirming that lavas erupted in SE Turkey did not suffer any important process of crustal contamination. Combining the main evidences from the geochemical data of both rocks and noble gases of fluids inclusions, we suggest that the melt generation of the alkaline magmas was triggered by a stretching lithosphere resulting from asthenosphere upwelling and decompression melting, analogous to geodynamic models of the coeval Syrian alkaline volcanic rocks and the older NW Anatolian rocks, rather than by subduction or plume-related processes. Finally, the combined results of noble gas-rock geochemistry point to a widespread mantle metasomatism as well as absence of crustal assimilation and negligible crustal contamination in contrast to former conclusions based only on the solid rock geochemistry
    corecore