15 research outputs found

    Avanços recentes em nutrição de larvas de peixes

    Get PDF
    Os requisitos nutricionais de larvas de peixes são ainda mal compreendidos, o que leva a altas mortalidades e problemas de qualidade no seu cultivo. Este trabalho pretende fazer uma revisão de novas metodologias de investigação, tais como estudos com marcadores, genómica populacional, programação nutricional, génomica e proteómica funcionais, e fornecer ainda alguns exemplos das utilizações presentes e perspectivas futuras em estudos de nutrição de larvas de peixes

    The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814

    Full text link
    We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2^{2} for the 90th percentile best localization), covering a total of 51 deg2^{2} and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host-galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an rr-band decline rate of 0.68 mag day1^{-1}, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most 17.8-17.8 mag (50% confidence). Our data are not constraining for ''red'' kilonovae and rule out ''blue'' kilonovae with M>0.5MM>0.5 M_{\odot} (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <<17^{\circ} assuming an initial jet opening angle of \sim5.25.2^{\circ} and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.Comment: 86 pages, 9 figure

    The impact of human expert visual inspection on the discovery of strong gravitational lenses

    Get PDF
    We investigate the ability of human ’expert’ classifiers to identify strong gravitational lens candidates in Dark Energy Survey like imaging. We recruited a total of 55 people that completed more than 25% of the project. During the classification task, we present to the participants 1489 images. The sample contains a variety of data including lens simulations, real lenses, non-lens examples, and unlabeled data. We find that experts are extremely good at finding bright, well-resolved Einstein rings, whilst arcs with g-band signal-to-noise less than ∼25 or Einstein radii less than ∼1.2 times the seeing are rarely recovered. Very few non-lenses are scored highly. There is substantial variation in the performance of individual classifiers, but they do not appear to depend on the classifier’s experience, confidence or academic position. These variations can be mitigated with a team of 6 or more independent classifiers. Our results give confidence that humans are a reliable pruning step for lens candidates, providing pure and quantifiably complete samples for follow-up studies

    Novel methodologies in marine fish larval nutrition

    No full text
    Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of 14C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for different species of larval fish
    corecore