7 research outputs found

    Regulation of hedgehog Ligand Expression by the N-End Rule Ubiquitin-Protein Ligase Hyperplastic Discs and the Drosophila GSK3ÎČ Homologue, Shaggy

    Get PDF
    Hedgehog (Hh) morphogen signalling plays an essential role in tissue development and homeostasis. While much is known about the Hh signal transduction pathway, far less is known about the molecules that regulate the expression of the hedgehog (hh) ligand itself. Here we reveal that Shaggy (Sgg), the Drosophila melanogaster orthologue of GSK3ÎČ, and the N-end Rule Ubiquitin-protein ligase Hyperplastic Discs (Hyd) act together to co-ordinate Hedgehog signalling through regulating hh ligand expression and Cubitus interruptus (Ci) expression. Increased hh and Ci expression within hyd mutant clones was effectively suppressed by sgg RNAi, placing sgg downstream of hyd. Functionally, sgg RNAi also rescued the adult hyd mutant head phenotype. Consistent with the genetic interactions, we found Hyd to physically interact with Sgg and Ci. Taken together we propose that Hyd and Sgg function to co-ordinate hh ligand and Ci expression, which in turn influences important developmental signalling pathways during imaginal disc development. These findings are important as tight temporal/spatial regulation of hh ligand expression underlies its important roles in animal development and tissue homeostasis. When deregulated, hh ligand family misexpression underlies numerous human diseases (e.g., colorectal, lung, pancreatic and haematological cancers) and developmental defects (e.g., cyclopia and polydactyly). In summary, our Drosophila-based findings highlight an apical role for Hyd and Sgg in initiating Hedgehog signalling, which could also be evolutionarily conserved in mammals

    New synthetic pathways for the formation of heterodinucleotides incorporing difluorophosphinothioate linkage

    No full text
    Les oligonuclĂ©otides (ONs) naturels sont une classe majeure de biomolĂ©cules ayant un potentiel thĂ©rapeutique prometteur. Cependant, le dĂ©veloppement d’ONs thĂ©rapeutiques rencontre deux problĂšmes majeurs : un manque de stabilitĂ© envers les nuclĂ©ases et un manque de sĂ©lectivitĂ© envers une cible thĂ©rapeutique. Pour pallier ces problĂšmes, les chercheurs acadĂ©miques et industriels ont travaillĂ© sur le dĂ©veloppement d’ONs modifiĂ©s, incorporant notamment de nouveaux analogues du pont phosphodiester naturel. Dans ce contexte, la synthĂšse de nouveaux analogues du lien naturel a Ă©tĂ© Ă©tudiĂ©e au laboratoire, Ă  savoir les motifs difluorophosphinate (R-CF2-P(O)(OEt)CH2-R) et difluorophosphinothioate (R-CF2-P(S)(OEt)CH2-R). Ainsi, grĂące aux travaux menĂ©s prĂ©cĂ©demment, une synthĂšse de premiĂšre gĂ©nĂ©ration a Ă©tĂ© mise au point conduisant Ă  la formation d’un homodinuclĂ©otide comportant ces motifs. Le fragment-clĂ© furanose-CF2-P(S)(OEt)CH2-furanose, permettant l’introduction de deux bases nuclĂ©iques identique, est obtenu par une construction successive des deux liaisons P-C. Une oxydation du motif R-CF2-P(S)(OEt)CH2-R permet l’obtention du lien R-CF2-P(O)(OEt)CH2-R. Dans la continuitĂ© de ces travaux, ce projet de thĂšse est focalisĂ© sur la mise au point d’une synthĂšse de seconde gĂ©nĂ©ration menant Ă  des hĂ©tĂ©rodinuclĂ©otides caractĂ©risĂ©s par la prĂ©sence du motif difluorophosphin(othio)ate et deux nuclĂ©obases diffĂ©rentes. A partir d’un substrat commun, l’allofuranose, la synthĂšse des diffĂ©rents nuclĂ©osides intermĂ©diaires a Ă©tĂ© rĂ©alisĂ©e. Dans un premier temps, ceux-ci ont ensuite Ă©tĂ© utilisĂ©s afin de former un nouveau fragment-clĂ© furanose-CF2-P(S)(OEt)CH2-nuclĂ©oside Ă  partir duquel une seconde base nuclĂ©ique diffĂ©rente a Ă©tĂ© incorporĂ©e. Cependant, au cours de cette Ă©tude, un phĂ©nomĂšne de substitution d’une base nuclĂ©ique par une autre a pu ĂȘtre mis en Ă©vidence. En dĂ©pit de ce processus dit de trans-N-glycosylation, six dinuclĂ©otides (T-PMB-U, T-U, U-U, T-T, C-T, C-G-Prot) ont pu ĂȘtre prĂ©parĂ©s.Oligonucleotides (ONs) represent a major class of bioactive molecules with a great potential in medicinal chemistry. However, the development of therapeutic ONs is facing two major problems: a lack of stability toward nucleases and a lack of selectivity toward a specific therapeutic target. To overcome those problems, academic and industrial chemists are working on the development of modified ONs, incorporating in particular new analogues of the natural phosphodiester bridge. In this context, the synthesis of new analogues was studied in the laboratory, namely the difluorophosphinate (R-CF2-P(O)(OEt)CH2-R) and difluorophosphinothioate (R-CF2-P(S)(OEt)CH2-R) units. Thanks to previous studies, a first-generation synthesis was developed towards a homodinucleotide incorporating a difluorophosphinate moiety. A key fragment furanose-CF2-P(S)(OEt)CH2-furanose, allowing the introduction of two identical nucleic bases, was obtained by the sequential construction of the two P-C bonds. Oxidation of R-CF2-P(S)(OEt)CH2-R gave access to the R-CF2-P(O)(OEt)CH2-R unit. This thesis describes the development of a second-generation synthesis towards heterodinucleotides incorporating a difluorophosphin(othio)ate as internucleosidic bridge and two different nucleic bases. Starting from a common substrate, allofuranose, the synthesis of key fragments was worked out. These intermediates were used to build a difluorophosphinothioate internucleosidic bridge. Thus, a new key fragment furanose-CF2-P(S)(OEt)CH2-nucleoside was obtained and used to introduce a second, identical or different, nucleic base. However, a substitution process involving the replacement of a nucleic base with another one was highlighted. Despite this trans-N-glycosylation process, six dinucleotides (T-PMB-U, T-U, U-U, T-T, C-T, C-G-Prot) were prepared

    Nouvelles stratégies synthétiques vers la formation d'hétérodinucléotides incorporant un motif difluorophosphinothioate.

    No full text
    Oligonucleotides (ONs) represent a major class of bioactive molecules with a great potential in medicinal chemistry. However, the development of therapeutic ONs is facing two major problems: a lack of stability toward nucleases and a lack of selectivity toward a specific therapeutic target. To overcome those problems, academic and industrial chemists are working on the development of modified ONs, incorporating in particular new analogues of the natural phosphodiester bridge. In this context, the synthesis of new analogues was studied in the laboratory, namely the difluorophosphinate (R-CF2-P(O)(OEt)CH2-R) and difluorophosphinothioate (R-CF2-P(S)(OEt)CH2-R) units. Thanks to previous studies, a first-generation synthesis was developed towards a homodinucleotide incorporating a difluorophosphinate moiety. A key fragment furanose-CF2-P(S)(OEt)CH2-furanose, allowing the introduction of two identical nucleic bases, was obtained by the sequential construction of the two P-C bonds. Oxidation of R-CF2-P(S)(OEt)CH2-R gave access to the R-CF2-P(O)(OEt)CH2-R unit. This thesis describes the development of a second-generation synthesis towards heterodinucleotides incorporating a difluorophosphin(othio)ate as internucleosidic bridge and two different nucleic bases. Starting from a common substrate, allofuranose, the synthesis of key fragments was worked out. These intermediates were used to build a difluorophosphinothioate internucleosidic bridge. Thus, a new key fragment furanose-CF2-P(S)(OEt)CH2-nucleoside was obtained and used to introduce a second, identical or different, nucleic base. However, a substitution process involving the replacement of a nucleic base with another one was highlighted. Despite this trans-N-glycosylation process, six dinucleotides (T-PMB-U, T-U, U-U, T-T, C-T, C-G-Prot) were prepared.Les oligonuclĂ©otides (ONs) naturels sont une classe majeure de biomolĂ©cules ayant un potentiel thĂ©rapeutique prometteur. Cependant, le dĂ©veloppement d’ONs thĂ©rapeutiques rencontre deux problĂšmes majeurs : un manque de stabilitĂ© envers les nuclĂ©ases et un manque de sĂ©lectivitĂ© envers une cible thĂ©rapeutique. Pour pallier ces problĂšmes, les chercheurs acadĂ©miques et industriels ont travaillĂ© sur le dĂ©veloppement d’ONs modifiĂ©s, incorporant notamment de nouveaux analogues du pont phosphodiester naturel. Dans ce contexte, la synthĂšse de nouveaux analogues du lien naturel a Ă©tĂ© Ă©tudiĂ©e au laboratoire, Ă  savoir les motifs difluorophosphinate (R-CF2-P(O)(OEt)CH2-R) et difluorophosphinothioate (R-CF2-P(S)(OEt)CH2-R). Ainsi, grĂące aux travaux menĂ©s prĂ©cĂ©demment, une synthĂšse de premiĂšre gĂ©nĂ©ration a Ă©tĂ© mise au point conduisant Ă  la formation d’un homodinuclĂ©otide comportant ces motifs. Le fragment-clĂ© furanose-CF2-P(S)(OEt)CH2-furanose, permettant l’introduction de deux bases nuclĂ©iques identique, est obtenu par une construction successive des deux liaisons P-C. Une oxydation du motif R-CF2-P(S)(OEt)CH2-R permet l’obtention du lien R-CF2-P(O)(OEt)CH2-R. Dans la continuitĂ© de ces travaux, ce projet de thĂšse est focalisĂ© sur la mise au point d’une synthĂšse de seconde gĂ©nĂ©ration menant Ă  des hĂ©tĂ©rodinuclĂ©otides caractĂ©risĂ©s par la prĂ©sence du motif difluorophosphin(othio)ate et deux nuclĂ©obases diffĂ©rentes. A partir d’un substrat commun, l’allofuranose, la synthĂšse des diffĂ©rents nuclĂ©osides intermĂ©diaires a Ă©tĂ© rĂ©alisĂ©e. Dans un premier temps, ceux-ci ont ensuite Ă©tĂ© utilisĂ©s afin de former un nouveau fragment-clĂ© furanose-CF2-P(S)(OEt)CH2-nuclĂ©oside Ă  partir duquel une seconde base nuclĂ©ique diffĂ©rente a Ă©tĂ© incorporĂ©e. Cependant, au cours de cette Ă©tude, un phĂ©nomĂšne de substitution d’une base nuclĂ©ique par une autre a pu ĂȘtre mis en Ă©vidence. En dĂ©pit de ce processus dit de trans-N-glycosylation, six dinuclĂ©otides (T-PMB-U, T-U, U-U, T-T, C-T, C-G-Prot) ont pu ĂȘtre prĂ©parĂ©s

    Synthesis of Fluorinated Modified Dinucleotide

    No full text
    International audienc

    Synthesis of Fluorinated Modified Dinucleotides

    No full text
    International audienc

    Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox

    No full text
    International audienceHydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and identify both which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work provides thus the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows to obtain compounds equally stable in human and rodent models
    corecore