20 research outputs found

    The middle ear of the pink fairy armadillo Chlamyphorus truncatus (Xenarthra, Cingulata, Chlamyphoridae): comparison with armadillo relatives using computed tomography.

    Get PDF
    The pink fairy armadillo Chlamyphorus truncatus is the smallest extant armadillo and one of the least-known fossorial mammals. The aim of this study was to establish if its middle ear is specially adapted to the subterranean environment, through comparison with more epigeic relatives of the groups Euphractinae (Chaetophractus villosus, Chaetophractus vellerosus, Zaedyus pichiy) and Dasypodinae (Dasypus hybridus). We examined the middle ears using micro-computed tomography and subsequent three-dimensional reconstructions. D. hybridus has a relatively small middle ear cavity, an incomplete bulla and 'ancestral' ossicular morphology. The other species, including Chlamyphorus, have fully ossified bullae and middle ear ossicles, with a morphology between 'transitional' and 'freely mobile', but in all armadillos the malleus retains a long anterior process. Unusual features of armadillo ears include the lack of a pedicellate lenticular apophysis and the presence, in some species, of an element of Paaw within the stapedius muscle. In common with many subterranean mammals, Chlamyphorus has a relatively flattened malleo-incudal articulation and appears to lack a functional tensor tympani muscle. Its middle ear cavity is not unusually enlarged, and its middle ear ossicles seem less robust than those of the other armadillos studied. In comparison with the euphractines, there is no reason to believe that the middle ear of this species is specially adapted to the subterranean environment; some aspects may even be indicative of degeneration. The screaming hairy armadillo, Chaetophractus vellerosus, has the most voluminous middle ear in both relative and absolute terms. Its hypertrophied middle ear cavity likely represents an adaptation to low-frequency hearing in arid rather than subterranean conditions.Argentinian research grants: SecretarĂ­a General de Ciencia y TecnologĂ­a, UNS (Project PGI 24/B243); Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas (CONICET) through a PhD fellowship to APB; SubsecretarĂ­a de Relaciones Internacionales, UNS, through a grant to APB

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
    corecore