4,348 research outputs found

    Field-induced transition of the magnetic ground state from A-type antiferromagnetic to ferromagnetic order in CsCo2Se2

    Full text link
    We report on the magnetic properties of CsCo2_2Se2_2 with ThCr2_2Si2_2 structure, which we have characterized through a series of magnetization and neutron diffraction measurements. We find that CsCo2_2Se22_2 undergoes a phase transition to an antiferromagnetically ordered state with a N\'eel temperature of TNT_{\rm N} \approx 66 K. The nearest neighbour interactions are ferromagnetic as observed by the positive Curie-Weiss temperature of Θ\Theta \approx 51.0 K. We find that the magnetic structure of CsCo2_2Se2_2 consists of ferromagnetic sheets, which are stacked antiferromagnetically along the tetragonal \textit{c}-axis, generally referred to as A-type antiferromagnetic order. The observed magnitude of the ordered magnetic moment at TT = 1.5 K is found to be only 0.20(1)μBohr\mu_{\rm Bohr}/Co. Already in comparably small magnetic fields of μ0HMM\mu_0 H_{MM}(5K) \approx 0.3 T, we observe a metamagnetic transition that can be attributed to spin-rearrangements of CsCo2_2Se2_2, with the moments fully ferromagnetically saturated in a magnetic field of μ0HFM\mu_0 H_{\rm FM}(5K) \approx 6.4 T. We discuss the entire experimentally deduced magnetic phase diagram for CsCo2_2Se2_2 with respect to its unconventionally weak magnetic coupling. Our study characterizes CsCo2_2Se2_2, which is chemically and electronically posed closely to the AxFe2ySe2A_xFe_{2-y}Se_2 superconductors, as a host of versatile magnetic interactions

    Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure

    Full text link
    We report muon spin rotation experiments on the magnetic penetration depth lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find that in this system lambda^{-2}(T) is best described by d-wave scenario. This is in contrast to the case of the optimally doped x = 0.35 system which is known to be a nodeless s^{+-}-wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s^{+-} to d-wave in Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %, while at optimal doping x = 0.35 a significant decrease of lambda(0) was reported. The superconducting transition temperature T_c as well as the gap to T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x = 0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review

    Relativistic nucleon optical potentials with isospin dependence in Dirac Brueckner Hartree-Fock approach

    Full text link
    The relativistic optical model potential (OMP) for nucleon-nucleus scattering is investigated in the framework of Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-B One-Boson- Exchange potential for the bare nucleon-nucleon interaction. Both real and imaginary parts of isospin-dependent nucleon self-energies in nuclear medium are derived from the DBHF approach based on the projection techniques within the subtracted T -matrix representation. The Dirac potentials as well as the corresponding Schrodinger equivalent potentials are evaluated. An improved local density approximation is employed in this analysis, where a range parameter is included to account for a finite-range correction of the nucleon-nucleon interaction. As an example the total cross sections, differential elastic scattering cross sections, analyzing powers for n, p + 27Al at incident energy 100 keV < E < 250 MeV are calculated. The results derived from this microscopic approach of the OMP are compared to the experimental data, as well as the results obtained with a phenomenological OMP. A good agreement between the theoretical results and the measurements can be achieved for all incident energies using a constant value for the range parameter.Comment: 10 pages, 16 figure

    Evidence for strong lattice effects as revealed from huge unconventional oxygen isotope effects on the pseudogap temperature in La2x_{2-x}Srx_{x}CuO4_{4}

    Full text link
    The oxygen isotope (16^{16}O/18^{18}O) effect (OIE) on the pseudogap (charge-stripe ordering) temperature TT^{\ast} is investigated for the cuprate superconductor La2x_{2-x}Srx_{x}CuO4_{4} as a function of doping xx by means of x-ray absorption near edge structure (XANES) studies. A strong xx dependent and sign reversed OIE on TT^{\ast} is observed. The OIE exponent αT\alpha_{T^{\ast}} systematically decreases from αT=0.6(1.3)\alpha_{T^{\ast}} = - 0.6(1.3) for x=0.15x = 0.15 to αT=4.4(1.1)\alpha_{T^{\ast}} = - 4.4(1.1) for x=0.06x = 0.06, corresponding to increasing TT^{\ast} and decreasing superconducting transition temperature TcT_{c}. Both T(16O)T^{\ast}(^{16}{\rm O}) and T(18O)T^{\ast}(^{18}{\rm O}) exhibit a linear doping dependence with different slopes and critical end points (where T(16O)T^{\ast}(^{16}{\rm O}) and T(18O)T^{\ast}(^{18}{\rm O}) fall to zero) at xc(16O)=0.201(4)x_{c}(^{16}{\rm O}) = 0.201(4) and xc(18O)=0.182(3)x_{c}(^{18}{\rm O}) = 0.182(3), indicating a large positive OIE of xcx_{c} with an exponent of αxc=0.84(22)\alpha_{x_{c}} = 0.84(22). The remarkably large and strongly doping dependent OIE on TT^{\ast} signals a substantial involvement of the lattice in the formation of the pseudogap, consistent with a polaronic approach to cuprate superconductivity and the vibronic character of its ground state

    Brief Studies

    Get PDF
    The Book of Psalms The Window in the Ark Classics in the Senior Colleg

    Adsorption and Reaction of Ethene on Cr2O3(0001)/Cr(110)

    Get PDF

    The neural networks underlying reappraisal of empathy for pain

    Get PDF
    Emotion regulation plays a central role in empathy. Only by successfully regulating our own emotions can we reliably use them in order to interpret the content and valence of others’ emotions correctly. In an functional magnetic resonance imaging (fMRI)-based experiment, we show that regulating one’s emotion via reappraisal modulated biased emotional intensity ratings following an empathy for pain manipulation. Task-based analysis revealed increased activity in the right inferior frontal gyrus (IFG) when painful emotions were regulated using reappraisal, whereas empathic feelings that were not regulated resulted in increased activity bilaterally in the precuneus, supramarginal gyrus and middle frontal gyrus (MFG), as well as the right parahippocampal gyrus. Functional connectivity analysis indicated that the right IFG plays a role in the regulation of empathy for pain, through its connections with regions in the empathy for pain network. Furthermore, these connections were further modulated as a function of the type of regulation used: in sum, our results suggest that accurate empathic judgment (i.e. empathy that is unbiased) relies on a complex interaction between neural regions involved in emotion regulation and regions associated with empathy for pain. Thus, demonstrating the importance of emotion regulation in the formulation of complex social systems and sheds light on the intricate network implicated in this complex process
    corecore