25 research outputs found

    The metabolic engine of endothelial cells

    No full text
    Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.status: publishe

    Endothelial Cell Metabolism in Health and Disease

    No full text
    The metabolism of endothelial cells (ECs) has only recently been recognized as a driving force of angiogenesis. Metabolic pathways, such as glycolysis, fatty acid oxidation, and glutamine metabolism, have distinct, essential roles during vessel formation. Moreover, EC metabolism is markedly perturbed in pathologies such as cancer and diabetes. For instance, because tumor ECs increase glycolysis, lowering hyperglycolysis in tumor ECs induces therapeutic benefits in preclinical tumor models. Expanding our knowledge of how ECs alter their metabolism in disease could pave the way for novel therapeutic opportunities. In this review, we discuss the most recent insights into EC metabolism in health and disease, with emphasis on the changes in metabolism in the tumor endothelium.status: publishe

    BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization

    No full text
    The amount of biological data, generated with (single cell) omics technologies, is rapidly increasing, thereby exacerbating bottlenecks in the data analysis and interpretation of omics experiments. Data mining platforms that facilitate non-bioinformatician experimental scientists to analyze a wide range of experimental designs and data types can alleviate such bottlenecks, aiding in the exploration of (newly generated or publicly available) omics datasets. Here, we present BIOMEX, a browser-based software, designed to facilitate the Biological Interpretation Of Multi-omics EXperiments by bench scientists. BIOMEX integrates state-of-the-art statistical tools and field-tested algorithms into a flexible but well-defined workflow that accommodates metabolomics, transcriptomics, proteomics, mass cytometry and single cell data from different platforms and organisms. The BIOMEX workflow is accompanied by a manual and video tutorials that provide the necessary background to navigate the interface and get acquainted with the employed methods. BIOMEX guides the user through omics-tailored analyses, such as data pretreatment and normalization, dimensionality reduction, differential and enrichment analysis, pathway mapping, clustering, marker analysis, trajectory inference, meta-analysis and others. BIOMEX is fully interactive, allowing users to easily change parameters and generate customized plots exportable as high-quality publication-ready figures. BIOMEX is open source and freely available at https://www.vibcancer.be/software-tools/biomex.status: publishe

    Heterogeneous Effects of Calorie Content and Nutritional Components Underlie Dietary Influence on Pancreatic Cancer Susceptibility

    No full text
    International audiencePancreatic cancer is a rare but fatal form of cancer, the fourth highest in absolute mortality. Known risk factors include obesity, diet, and type 2 diabetes; however, the low incidence rate and interconnection of these factors confound the isolation of individual effects. Here, we use epidemiological analysis of prospective human cohorts and parallel tracking of pancreatic cancer in mice to dissect the effects of obesity, diet, and diabetes on pancreatic cancer. Through longitudinal monitoring and multi-omics analysis in mice, we found distinct effects of protein, sugar, and fat dietary components, with dietary sugars increasing Mad2l1 expression and tumor proliferation. Using epidemiological approaches in humans, we find that dietary sugars give a MAD2L1 genotype-dependent increased susceptibility to pancreatic cancer. The translation of these results to a clinical setting could aid in the identification of the at-risk population for screening and potentially harness dietary modification as a therapeutic measure

    EndoDB: a database of endothelial cell transcriptomics data

    No full text
    Endothelial cells (ECs) line blood vessels, regulate homeostatic processes (blood flow, immune cell trafficking), but are also involved in many prevalent diseases. The increasing use of high-throughput technologies such as gene expression microarrays and (single cell) RNA sequencing generated a wealth of data on the molecular basis of EC (dys-)function. Extracting biological insight from these datasets is challenging for scientists who are not proficient in bioinformatics. To facilitate the re-use of publicly available EC transcriptomics data, we developed the endothelial database EndoDB, a web-accessible collection of expert curated, quality assured and pre-analyzed data collected from 360 datasets comprising a total of 4741 bulk and 5847 single cell endothelial transcriptomes from six different organisms. Unlike other added-value databases, EndoDB allows to easily retrieve and explore data of specific studies, determine under which conditions genes and pathways of interest are deregulated and assess reprogramming of metabolism via principal component analysis, differential gene expression analysis, gene set enrichment analysis, heatmaps and metabolic and transcription factor analysis, while single cell data are visualized as gene expression color-coded t-SNE plots. Plots and tables in EndoDB are customizable, downloadable and interactive. EndoDB is freely available at https://vibcancer.be/software-tools/endodb, and will be updated to include new studies.status: publishe

    MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma

    No full text
    Autophagy favors both cell survival and cancer suppression, and increasing evidence reveals that microRNAs (MIRs) regulate autophagy. Previously we reported that MIR126 is downregulated in malignant mesothelioma (MM). Therefore, we investigated the role of MIR126 in the regulation of cell metabolism and autophagy in MM models. We report that MIR126 induces autophagic flux in MM cells by downregulating insulin receptor substrate-1 (IRS1) and disrupting the IRS1 signaling pathway. This was specific to MM cells, and was not observed in non-malignant cells of mesothelial origin or in MM cells expressing MIR126-insensitive IRS1 transcript. The MIR126 effect on autophagy in MM cells was recapitulated by IRS1 silencing, and antagonized by IRS1 overexpression or antisense MIR126 treatment. The MIR126-induced loss of IRS1 suppressed glucose uptake, leading to energy deprivation and AMPK-dependent phosphorylation of ULK1. In addition, MIR126 stimulated lipid droplet accumulation in a hypoxia-inducible factor-1α (HIF1α)-dependent manner. MIR126 also reduced pyruvate dehydrogenase kinase (PDK) and acetyl-CoA-citrate lyase (ACL) expression, leading to the accumulation of cytosolic citrate and paradoxical inhibition of pyruvate dehydrogenase (PDH) activity. Simultaneous pharmacological and genetic intervention with PDK and ACL activity phenocopied the effects of MIR126. This suggests that in MM MIR126 initiates a metabolic program leading to high autophagic flux and HIF1α stabilization, incompatible with tumor progression of MM. Consistently, MIR126-expressing MM cells injected into immunocompromised mice failed to progress beyond the initial stage of tumor formation, showing that increased autophagy has a protective role in MM

    Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer

    No full text
    Aims: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2(high) disease.Results: We demonstrate that Her2(high) cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2(high) tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2(high) background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2(high) cells to MitoTam is dependent on the mitochondrial fraction of Her2.Innovation: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam.Conclusion: We propose that the ETC is a suitable therapeutic target in Her2(high) disease

    Measuring Glycolytic and Mitochondrial Fluxes in Endothelial Cells Using Radioactive Tracers

    No full text
    Endothelial cells (ECs) form the inner lining of the vascular network. Although they can remain quiescent for years, ECs exhibit high plasticity in both physiological and pathological conditions, when they need to rapidly form new blood vessels in a process called angiogenesis. EC metabolism recently emerged as an important driver of this angiogenic switch. The use of radioactive tracer substrates to assess metabolic flux rates in ECs has been essential for the discovery that fatty acid, glucose, and glutamine metabolism critically contribute to vessel sprouting. In the future, these assays will be useful as a tool for the characterization of pathological conditions in which deregulation of EC metabolism underlies and/or precedes the disease, but also for the identification of anti-angiogenic metabolic targets. This chapter describes in detail the radioactive tracer substrate assays that have been used for the determination of EC metabolic flux in vitro.status: Published onlin
    corecore