22 research outputs found

    Investigation of Direct Force Control for Planetary Aerocapture at Neptune

    Get PDF
    In this work, a direct force control numerical predictor-corrector guidance architecture is developed to enable Neptune aerocapture using flight-heritage blunt body aeroshells. A linear aerodynamics model is formulated for a Mars Science Laboratory-derived aeroshell. The application of calculus of variations shows that the optimal angle of attack and side-slip angle control laws are bang-bang. A closed-loop numerical predictor-corrector direct force control guidance algorithm is developed and numerically simulated using the Program to Optimize Simulated Trajectories II. The Monte Carlo simulated trajectories are demonstrated to be robust to the modeled dispersions in aerodynamics, atmospheric density, and entry state. An aerocapture technology trade study demonstrates that blunt body direct force control aerocapture enables similar performance as slender body bank angle control but halves the peak g-loading

    The Effect of Turbulence Modeling on the Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions

    Get PDF
    CFD analysis is presented on the effects of turbulence modeling choices on the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The analyses were carried out with the VULCAN-CFD solver using Reynolds-Averaged Simulations (RAS). The hypervelocity flow conditions match the high Mach number flow of the experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The three injectors are the baseline configurations used in the experiments and represent three categories of injectors typically considered individually or in combination for fueling high-speed propulsive devices. The current work discusses the impact of the turbulence model and the turbulent Schmidt number on the mixing flow field behavior and the mixing performance as described by the one-dimensional values of the Mach number, total pressure recovery, and the mixing efficiency. Because planar laser induced fluorescence (PLIF) images are available from the EIMP experiments, the sensitivity of the synthetic LIF signal to turbulence modeling choices is also examined to determine whether PLIF can be extended beyond its intended qualitative visualization purpose and used to guide CFD turbulence model and parameter selections. It is found that the mixing performance, as quantified using mixing efficiency, exhibits a strong sensitivity to both turbulence model choice and turbulent Schmidt number value. However, the synthetic LIF signal only demonstrates a modest level of sensitivity, which suggests that PLIF is of limited use for guiding CFD turbulence model and parameter selections

    Small Satellite-Sized Hypersonic Inflatable Aerodynamic Decelerators for Interplanetary Science Missions

    Get PDF
    To make the most of ridesharing opportunities, small satellite (SmallSat) mission designers endeavor to pack as much payload into a SmallSat-class form factor as possible. The mass and volume constraints of this smaller vehicle class present a challenge for interplanetary mission sets that require a means of achieving orbit insertion at their destination of interest. For a fully propulsive orbit insertion design, this may translate to the propellant mass being a significant fraction of the overall vehicle mass and prolonged insertion time. Aerocapture is a single quick maneuver that can significantly reduce the required propellant mass for orbit insertion. Because aerocapture uses a planet’s atmosphere to achieve the necessary change in velocity, a protective aeroshell is needed. The constraints imposed on secondary payloads render traditional rigid aeroshells mass and space prohibitive for the SmallSat class of vehicles; thus, warranting consideration of deployable designs that can be stowed compactly until needed for atmospheric entry. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is a deployable aeroshell that leverages inflatable toroids to achieve the large drag area needed for aerodynamic deceleration. While the technology is currently being analyzed for Mars human-scale missions, it has the potential applicability for interplanetary SmallSat-scale missions as well. This paper highlights a study conducted during an internship at NASA Langley Research Center to investigate the feasibility of using a scaled-down HIAD design in SmallSat aerocapture missions. Several scaling methodologies are investigated including use of parametric models and direct computer-aided design (CAD) model scaling. Candidate HIAD configurations that conform to secondary payload adapter requirements are identified. The Program to Optimize Simulated Trajectories II (POST2) is utilized to conduct orbit insertion performance and trajectory sensitivity studies using the candidate configurations at Earth, Venus, and Mars. The results of the study indicate that multiple SmallSat-sized HIAD designs, targeting a range of SmallSat payload classes, are feasible for planetary aerocapture missions to Mars and Venus as well as Earth-based aerocapture missions

    Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke).

    Get PDF
    BACKGROUND: Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. METHODS: STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0-2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. RESULTS: A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients ( CONCLUSIONS: In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640

    Effects of Neonatal Nutrition Interventions on Neonatal Mortality and Child Health and Development Outcomes: A Systematic Review

    Get PDF
    Background The last two decades have seen a significant decrease in mortality for children \u3c 5 years of age in low and middle‐income countries (LMICs); however, neonatal (age, 0–28 days) mortality has not decreased at the same rate. We assessed three neonatal nutritional interventions that have the potential of reducing morbidity and mortality during infancy in LMICs. Objectives To determine the efficacy and effectiveness of synthetic vitamin A, dextrose oral gel, and probiotic supplementation during the neonatal period. Search Methods We conducted electronic searches for relevant studies on the following databases: PubMed, CINAHL, LILACS, SCOPUS, and CENTRAL, Cochrane Central Register for Controlled Trials, up to November 27, 2019. Selection Criteria We aimed to include randomized and quasi‐experimental studies. The target population was neonates in LMICs. The interventions included synthetic vitamin A supplementation, oral dextrose gel supplementation, and probiotic supplementation during the neonatal period. We included studies from the community and hospital settings irrespective of the gestational age or birth weight of the neonate. Data Collection and Analysis Two authors screened the titles and extracted the data from selected studies. The risk of bias (ROB) in the included studies was assessed according to the Cochrane Handbook of Systematic Reviews. The primary outcome was all‐cause mortality. The secondary outcomes were neonatal sepsis, necrotizing enterocolitis (NEC), prevention and treatment of neonatal hypoglycaemia, adverse events, and neurodevelopmental outcomes. Data were meta‐analyzed by random effect models to obtain relative risk (RR) and 95% confidence interval (CI) for dichotomous outcomes and mean difference with 95% CI for continuous outcomes. The overall rating of evidence was determined by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Main Results Sixteen randomized studies (total participants 169,366) assessed the effect of vitamin A supplementation during the neonatal period. All studies were conducted in low‐ and middle‐income (LMIC) countries. Thirteen studies were conducted in the community setting and three studies were conducted in the hospital setting, specifically in neonatal intensive care units. Studies were conducted in 10 different countries including India (four studies), Guinea‐Bissau (three studies), Bangladesh (two studies), and one study each in China, Ghana, Indonesia, Nepal, Pakistan, Tanzania, and Zimbabwe. The overall ROB was low in most of the included studies for neonatal vitamin A supplementation. The pooled results from the community based randomized studies showed that there was no significant difference in all‐cause mortality in the vitamin A (intervention) group compared to controls at 1 month (RR, 0.99; 95% CI, 0.90–1.08; six studies with 126,548 participants, statistical heterogeneity I2 0%, funnel plot symmetrical, grade rating high), 6 months (RR, 0.98; 95% CI, 0.89–1.07; 12 studies with 154,940 participants, statistical heterogeneity I2 43%, funnel plot symmetrical, GRADE quality high) and 12 months of age (RR, 1.04; 95% CI, 0.94–1.14; eight studies with 118,376 participants, statistical heterogeneity I2 46%, funnel plot symmetrical, GRADE quality high). Neonatal vitamin A supplementation increased the incidence of bulging fontanelle by 53% compared to control (RR, 1.53; 95% CI, 1.12–2.09; six studies with 100,256 participants, statistical heterogeneity I2 65%, funnel plot symmetrical, GRADE quality high). We did not identify any experimental study that addressed the use of dextrose gel for the prevention and/or treatment of neonatal hypoglycaemia in LMIC. Thirty‐three studies assessed the effect of probiotic supplementation during the neonatal period (total participants 11,595; probiotics: 5854 and controls: 5741). All of the included studies were conducted in LMIC and were randomized. Most of the studies were done in the hospital setting and included participants who were preterm (born \u3c 37 weeks gestation) and/or low birth weight (\u3c 2500 g birth weight). Studies were conducted in 13 different countries with 10 studies conducted in India, six studies in Turkey, three studies each in China and Iran, two each in Mexico and South Africa, and one each in Bangladesh, Brazil, Colombia, Indonesia, Nepal, Pakistan, and Thailand. Three studies were at high ROB due to lack of appropriate randomization sequence or allocation concealment. Combined data from 25 studies showed that probiotic supplementation reduced all‐cause mortality by 20% compared to controls (RR, 0.80; 95% CI, 0.66–0.96; total number of participants 10,998, number needed to treat 100, statistical heterogeneity I2 0%, funnel plot symmetrical, GRADE quality high). Twenty‐nine studies reported the effect of probiotics on the incidence of NEC, and the combined results showed a relative reduction of 54% in the intervention group compared to controls (RR, 0.46; 95% CI, 0.35–0.59; total number of participants 5574, number needed to treat 17, statistical heterogeneity I2 24%, funnel plot symmetrical, GRADE quality high). Twenty‐one studies assessed the effect of probiotic supplementation during the neonatal period on neonatal sepsis, and the combined results showed a relative reduction of 22% in the intervention group compared to controls (RR, 0.78; 95% CI, 0.70–0.86; total number of participants 9105, number needed to treat 14, statistical heterogeneity I2 23%, funnel plot symmetrical, GRADE quality high). Authors\u27 Conclusions Vitamin A supplementation during the neonatal period does not reduce all‐cause neonatal or infant mortality in LMICs in the community setting. However, neonatal vitamin A supplementation increases the risk of Bulging Fontanelle. No experimental or quasi‐experimental studies were available from LMICs to assess the effect of dextrose gel supplementation for the prevention or treatment of neonatal hypoglycaemia. Probiotic supplementation during the neonatal period seems to reduce all‐cause mortality, NEC, and sepsis in babies born with low birth weight and/or preterm in the hospital setting. There was clinical heterogeneity in the use of probiotics, and we could not recommend any single strain of probiotics for wider use based on these results. There was a lack of studies on probiotic supplementation in the community setting. More research is needed to assess the effect of probiotics administered to neonates in‐home/community setting in LMICs

    Small Satellite-Sized Hypersonic Inflatable Aerodynamic Decelerators for Interplanetary Science Missions

    No full text
    To make the most of ridesharing opportunities, small satellite (SmallSat) mission designers endeavor to pack as much payload into a SmallSat-class form factor as possible. The mass and volume constraints of this smaller vehicle class present a challenge for interplanetary mission sets that require a means of achieving orbit insertion at their destination of interest. For a fully propulsive orbit insertion design, this may translate to the propellant mass being a significant fraction of the overall vehicle mass and prolonged insertion time. Aerocapture is a single quick maneuver that can significantly reduce the required propellant mass for orbit insertion. Because aerocapture uses a planet’s atmosphere to achieve the necessary change in velocity, a protective aeroshell is needed. The constraints imposed on secondary payloads render traditional rigid aeroshells mass and space prohibitive for the SmallSat class of vehicles; thus, warranting consideration of deployable designs that can be stowed compactly until needed for atmospheric entry. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is a deployable aeroshell that leverages inflatable toroids to achieve the large drag area needed for aerodynamic deceleration. While the technology is currently being analyzed for Mars human-scale missions, it has the potential applicability for interplanetary SmallSat-scale missions as well. This paper highlights a study conducted during an internship at NASA Langley Research Center to investigate the feasibility of using a scaled-down HIAD design in SmallSat aerocapture missions. Several scaling methodologies are investigated including use of parametric models and direct computer-aided design (CAD) model scaling. Candidate HIAD configurations that conform to secondary payload adapter requirements are identified. The Program to Optimize Simulated Trajectories II (POST2) is utilized to conduct orbit insertion performance and trajectory sensitivity studies using the candidate configurations at Earth, Venus, and Mars. The results of the study indicate that multiple SmallSat-sized HIAD designs, targeting a range of SmallSat payload classes, are feasible for planetary aerocapture missions to Mars and Venus as well as Earth-based aerocapture missions

    REVIEW ON DESIGN AND DEVELOPMENT OF FLOOR CLEANING MACHINE

    No full text
    This paper focuses more on Automation of Drainage waste removal equipment. There is a problem of blockage of drainage, to overcome this problem automation of the system is necessary. Our concept is to use this in an efficient way to removal of solid wastages from the water. The system only requires water flow to operate the turbine. In this paper we working on improving the drainage system of the small town through the comparative study of the different open drainage system. https://journalnx.com/journal-article/2015074
    corecore