1,248 research outputs found

    Correction-to-scaling exponents for two-dimensional self-avoiding walks

    Full text link
    We study the correction-to-scaling exponents for the two-dimensional self-avoiding walk, using a combination of series-extrapolation and Monte Carlo methods. We enumerate all self-avoiding walks up to 59 steps on the square lattice, and up to 40 steps on the triangular lattice, measuring the mean-square end-to-end distance, the mean-square radius of gyration and the mean-square distance of a monomer from the endpoints. The complete endpoint distribution is also calculated for self-avoiding walks up to 32 steps (square) and up to 22 steps (triangular). We also generate self-avoiding walks on the square lattice by Monte Carlo, using the pivot algorithm, obtaining the mean-square radii to ~0.01% accuracy up to N = 4000. We give compelling evidence that the first non-analytic correction term for two-dimensional self-avoiding walks is Delta_1 = 3/2. We compute several moments of the endpoint distribution function, finding good agreement with the field-theoretic predictions. Finally, we study a particular invariant ratio that can be shown, by conformal-field-theory arguments, to vanish asymptotically, and we find the cancellation of the leading analytic correction.Comment: LaTeX 2.09, 56 pages. Version 2 adds a renormalization-group discussion near the end of Section 2.2, and makes many small improvements in the exposition. To be published in the Journal of Statistical Physic

    Diffraction-Based Interaction-Free Measurements

    Get PDF
    We introduce diffraction-based interaction-free measurements. In contrast with previous work where a set of discrete paths is engaged, good quality interaction-free measurements can be realized with a continuous set of paths, as is typical of optical propagation. If a bomb is present in a given spatial region -- so sensitive that a single photon will set it off -- its presence can still be detected without exploding it. This is possible because, by not absorbing the photon, the bomb causes the single photon to diffract around it. The resulting diffraction pattern can then be statistically distinguished from the bomb-free case. We work out the case of single- versus double- slit in detail, where the double-slit arises because of a bomb excluding the middle region.Comment: 8 pages, 4 figure

    Diffraction-based Interaction-free Measurements

    Get PDF
    We introduce diffraction-based interaction-free measurements. In contrast with previous work where a set of discrete paths is engaged, good-quality interaction-free measurements can be realized with a continuous set of paths, as is typical of optical propagation. If a bomb is present in a given spatial region—so sensitive that a single photon will set it off—its presence can still be detected without exploding it. This is possible because, by not absorbing the photon, the bomb causes the single photon to diffract around it. The resulting diffraction pattern can then be statistically distinguished from the bomb-free case. We work out the case of single- versus double-slit in detail, where the double-slit arises because of a bomb excluding the middle region

    Fast and Accurate Coarsening Simulation with an Unconditionally Stable Time Step

    Full text link
    We present Cahn-Hilliard and Allen-Cahn numerical integration algorithms that are unconditionally stable and so provide significantly faster accuracy-controlled simulation. Our stability analysis is based on Eyre's theorem and unconditional von Neumann stability analysis, both of which we present. Numerical tests confirm the accuracy of the von Neumann approach, which is straightforward and should be widely applicable in phase-field modeling. We show that accuracy can be controlled with an unbounded time step Delta-t that grows with time t as Delta-t ~ t^alpha. We develop a classification scheme for the step exponent alpha and demonstrate that a class of simple linear algorithms gives alpha=1/3. For this class the speed up relative to a fixed time step grows with the linear size of the system as N/log N, and we estimate conservatively that an 8192^2 lattice can be integrated 300 times faster than with the Euler method.Comment: 14 pages, 6 figure

    Medical student wellbeing - a consensus statement from Australia and New Zealand

    Get PDF
    Abstract Background Medical student wellbeing – a consensus statement from Australia and New Zealand outlines recommendations for optimising medical student wellbeing within medical schools in our region. Worldwide, medical schools have responsibilities to respond to concerns about student psychological, social and physical wellbeing, but guidance for medical schools is limited. To address this gap, this statement clarifies key concepts and issues related to wellbeing and provides recommendations for educational program design to promote both learning and student wellbeing. The recommendations focus on student selection; learning, teaching and assessment; learning environment; and staff development. Examples of educational initiatives from the evidence-base are provided, emphasising proactive and preventive approaches to student wellbeing. Main recommendations The consensus statement provides specific recommendations for medical schools to consider at all stages of program design and implementation. These are:Design curricula that promote peer support and progressive levels of challenge to students.Employ strategies to promote positive outcomes from stress and to help others in need.Design assessment tasks to foster wellbeing as well as learning.Provide mental health promotion and suicide prevention initiatives.Provide physical health promotion initiatives.Ensure safe and health-promoting cultures for learning in on-campus and clinical settings.Train staff on student wellbeing and how to manage wellbeing concerns. Conclusion A broad integrated approach to improving student wellbeing within medical school programs is recommended. Medical schools should work cooperatively with student and trainee groups, and partner with clinical services and other training bodies to foster safe practices and cultures. Initiatives should aim to assist students to develop adaptive responses to stressful situations so that graduates are prepared for the realities of the workplace. Multi-institutional, longitudinal collaborative research in Australia and New Zealand is needed to close critical gaps in the evidence needed by medical schools in our region

    Absence of a metallicity effect for ultra-short-period planets

    Get PDF
    Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2 Earth radii. It has been proposed that USP planets are the solid cores of hot Jupiters that lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different (p=3×104p = 3\times 10^{-4}), based on Keck spectroscopy of Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2--4~RR_\oplus. Thus it remains possible that the USP planets are the solid cores of formerly gaseous planets smaller than Neptune.Comment: AJ, in pres

    A two-qubit engine fueled by entangling operations and local measurements

    Full text link
    We introduce a two-qubit engine that is powered by entangling operations and projective local quantum measurements. Energy is extracted from the detuned qubits coherently exchanging a single excitation. This engine, which uses the information and back-action of the measurement, is generalized to an N-qubit chain. We show that by gradually increasing the energy splitting along the chain, the initial low energy of the first qubit can be up-converted deterministically to an arbitrarily high energy at the last qubit by successive neighbor swap operations and local measurements. Modeling the local measurement as the entanglement of a qubit with a meter, we identify the measurement fuel as the energetic cost to erase correlations between the qubits.Comment: 5 pages, 4 figure

    A low stellar obliquity for WASP-47, a compact multiplanet system with a hot Jupiter and an ultra-short period planet

    Get PDF
    We have detected the Rossiter-Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ=0±24\lambda = 0^\circ \pm 24^\circ. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45^\circ, remains the only clear counterexample.Comment: 5 pages, 2 figures, Accepted for publication on ApJL, comments welcom

    Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data

    Get PDF
    Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling

    The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    Get PDF
    We present stellar and planetary properties for 1305 Kepler Objects of Interest (KOIs) hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.Comment: 13 pages, 4 figures, 4 tables, accepted for publication in AJ; full versions of tables 3 and 4 are include
    corecore