259 research outputs found

    Does specification matter? Experiments with simple multiregional probabilistic population projections

    No full text
    Population projection models that introduce uncertainty are a growing subset of projection models in general. In this paper, we focus on the importance of decisions made with regard to the model specifications adopted. We compare the forecasts and prediction intervals associated with four simple regional population projection models: a total growth rate model, a component model with net migration, a component model with in-migration and outmigration rates, and a multiregional model with destination-specific out-migration rates. Vector autoregressive models are used to forecast future rates of growth, birth, death, net migration, in-migration and out-migration, and destination-specific out-migration for the North, Midlands and South regions in England (additional specification decisions once again come into play). They are also used to forecast different international migration measures. The base data represent a time series of annual data provided by the Office for National Statistics from 1976 to 2008. The results illustrate how both the forecasted subpopulation totals and the corresponding prediction intervals differ for the multiregional model in comparison to other simpler models, as well as for different assumptions about international migration. The paper ends end with a discussion of our results and possible directions for future researc

    Regional Population Projection Models

    Get PDF
    Public and private institutions, organizations, and firms require information on potential demographic futures. Public organizations must anticipate future population needs and thereby judge the need for efforts to alter current population processes and trends. Private firms maximize possible profits by adjusting product lines and shifting distribution networks using information obtained from regional demographic projections. This book demonstrates how researchers can analyze the evolution of multiple regional populations, each interconnected by migration flows. The author adopts a geographical perspective by considering how fertility, mortality, and migration combine to determine the growth, age composition, and spatial distribution of a national multiregional population. This monograph should be of use to those responsible for carrying out regional population projections in public and private organizations such as national, state, and local governments, business firms, foundations, universities, labor unions, social service organizations, and various public interest groups. SCIENTIFIC GEOGRAPHY SERIES, Grant Ian Thrall, editor.https://researchrepository.wvu.edu/rri-web-book/1014/thumbnail.jp

    Stochastic drift in discrete waves of nonlocally interacting particles

    Get PDF
    In this paper, we investigate a generalized model of N particles undergoing second-order nonlocal interactions on a lattice. Our results have applications across many research areas, including the modeling of migration, information dynamics, and Muller's ratchet—the irreversible accumulation of deleterious mutations in an evolving population. Strikingly, numerical simulations of the model are observed to deviate significantly from its mean-field approximation even for large population sizes. We show that the disagreement between deterministic and stochastic solutions stems from finite-size effects that change the propagation speed and cause the position of the wave to fluctuate. These effects are shown to decay anomalously as (ln N)-2 and (ln N)-3, respectively—much slower than the usual N-1/2 factor. Our results suggest that the accumulation of deleterious mutations in a Muller's ratchet and the loss of awareness in a population may occur much faster than predicted by the corresponding deterministic models. The general applicability of our model suggests that this unexpected scaling could be important in a wide range of real-world applications

    Stochastic drift in discrete waves of non-locally interacting-particles

    Get PDF
    In this paper, we investigate a generalised model of NN particles undergoing second-order non-local interactions on a lattice. Our results have applications across many research areas, including the modelling of migration, information dynamics and Muller's ratchet -- the irreversible accumulation of deleterious mutations in an evolving population. Strikingly, numerical simulations of the model are observed to deviate significantly from its mean-field approximation even for large population sizes. We show that the disagreement between deterministic and stochastic solutions stems from finite-size effects that change propagation speed and cause the position of the wave to fluctuate. These effects are shown to decay anomalously as (logN)2(\log N)^2 and (logN)3(\log N)^{3}, respectively -- much slower than the usual N\sqrt{N} factor. As a result, the accumulation of deleterious mutations in a Muller's ratchet and the loss of awareness in a population are processes that occur much faster than predicted by the corresponding deterministic models. The general applicability of our model suggests that this unexpected scaling could be important in a wide range of real-world applications.Comment: 13 pages, 9 figure

    Stochastic drift in discrete waves of nonlocally interacting particles

    Get PDF

    Dynamics of Information Networks

    Get PDF
    We explore a simple model of network dynamics which has previously been applied to the study of information flow in the context of epidemic spreading. A random rooted network is constructed that evolves according to the following rule: at a constant rate pairs of nodes (i,j) are randomly chosen to interact, with an edge drawn from i to j (and any other out-edge from i deleted) if j is strictly closer to the root with respect to graph distance. We characterise the dynamics of this random network in the limit of large size, showing that it instantaneously forms a tree with long branches that immediately collapse to depth two, then it slowly rearranges itself to a star-like configuration. This curious behaviour has consequences for the study of the epidemic models in which this information network was first proposed

    Results from EDGES High-Band: II. Constraints on Parameters of Early Galaxies

    Full text link
    We use the sky-average spectrum measured by EDGES High-Band (9019090-190 MHz) to constrain parameters of early galaxies independent of the absorption feature at 7878~MHz reported by Bowman et al. (2018). These parameters represent traditional models of cosmic dawn and the epoch of reionization produced with the 21cmFAST simulation code (Mesinger & Furlanetto 2007, Mesinger et al. 2011). The parameters considered are: (1) the UV ionizing efficiency (ζ\zeta), (2) minimum halo virial temperature hosting efficient star-forming galaxies (TvirminT^{\rm min}_{\rm vir}), (3) integrated soft-band X-ray luminosity (LX<2keV/SFRL_{\rm X\,<\,2\,keV}/{\rm SFR}), and (4) minimum X-ray energy escaping the first galaxies (E0E_{0}), corresponding to a typical HI{\rm \scriptstyle I} column density for attenuation through the interstellar medium. The High-Band spectrum disfavors high values of TvirminT^{\rm min}_{\rm vir} and ζ\zeta, which correspond to signals with late absorption troughs and sharp reionization transitions. It also disfavors intermediate values of LX<2keV/SFRL_{\rm X\,<\,2\,keV}/{\rm SFR}, which produce relatively deep and narrow troughs within the band. Specifically, we rule out 39.4<log10(LX<2keV/SFR)<39.839.4<\log_{10}\left(L_{\rm X\,<\,2\,keV}/{\rm SFR}\right)<39.8 (95%95\% C.L.). We then combine the EDGES High-Band data with constraints on the electron scattering optical depth from Planck and the hydrogen neutral fraction from high-zz quasars. This produces a lower degeneracy between ζ\zeta and TvirminT^{\rm min}_{\rm vir} than that reported in Greig & Mesinger (2017a) using the Planck and quasar constraints alone. Our main result in this combined analysis is the estimate 4.54.5~log10(Tvirmin/K)\leq \log_{10}\left(T^{\rm min}_{\rm vir}/\rm K\right)\leq~5.75.7 (95%95\% C.L.). We leave for future work the evaluation of 2121~cm models using simultaneously data from EDGES Low- and High-Band.Comment: Accepted in Ap

    A Global 86GHz VLBI Survey of Compact Radio Sources

    Full text link
    We present results from a large 86GHz global VLBI survey of compact radio sources. The main goal of the survey is to increase by factors of 3--5 the total number of objects accessible for future 3-mm VLBI imaging. The survey observations reach the baseline sensitivity of 0.1Jy and image sensitivity of better than 10 mJy/beam. The total of 127 compact radio sources have been observed. The observations have yielded images for 109 sources, extending the database of the sources imaged at 86GHz with VLBI observation by a factor of 5, and only 6 sources have not been detected. The remaining 12 objects have been detected but could not be imaged due to insufficient closure phase information. Radio galaxies are less compact than quasars and BL Lacs on sub-milliarcsecond scale. Flux densities and sizes of core and jet components of all imaged sources have been estimated using Gaussian model fitting. From these measurements, brightness temperatures have been calculated, taking into account resolution limits of the data. The cores of 70% of the imaged sources are resolved. The core brightness temperatures of the sources peak at 1011\sim 10^{11} K and only 1% have brightness temperatures higher than 101210^{12} K. Cores of Intraday Variable (IDV) sources are smaller in angular size than non-IDV sources, and so yield higher brightness temperatures.Comment: 72 pages, 12 figures, accepted for publication in the Astronomical Journa
    corecore