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DYNAMICS OF INFORMATION NETWORKS

Andrei Sontag, Tim Rogers and Christian A Yates∗

Abstract

We explore a simple model of network dynamics which has previously been applied

to the study of information flow in the context of epidemic spreading. A random rooted

network is constructed that evolves according to the following rule: at a constant rate

pairs of nodes (i, j) are randomly chosen to interact, with an edge drawn from i to j

(and any other out-edge from i deleted) if j is strictly closer to the root with respect to

graph distance. We characterise the dynamics of this random network in the limit of

large size, showing that it instantaneously forms a tree with long branches that immedi-

ately collapse to depth two, then it slowly rearranges itself to a star-like configuration.

This curious behaviour has consequences for the study of the epidemic models in which

this information network was first proposed.

Keywords: Information spread, random recursive trees, preferential attachment

2020 Mathematics Subject Classification: Primary 60J20; Secondary 91D30

1 Introduction

There is a growing awareness in the mathematical epidemiology community of the need to

model not just the infective status of individuals in a population, but also their knowledge

and attitudes. In important early work in this direction, Funk et al [13] combined a simple

model of information spread with standard epidemic dynamics to create a new class of

models in which there is feedback between the progress of the disease and altered behaviours

as a result of risk awareness. It has been shown that this feedback can fundamentally

change the trajectory of an outbreak [12, 13, 15, 16]. Information networks responding

to disease and other hazards are of course not unique to humans [23], and the ability to

transmit information accurately and efficiently confers significant evolutionary advantages

in animal populations. Hence, it is of fundamental interest to understand how information

is transmitted in populations and how networks linking information sources are formed.

∗Postal address: Department of Mathematical Sciences, University of Bath, Bath, BA27AY, UK
∗Email address: t.c.rogers@bath.ac.uk, c.yates@bath.ac.uk
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The literature on the spread of information, such as rumours and opinions, has a wide

range of fascinating models and dynamics. General prominent modelling approaches in-

clude the use of voter models [8], opinion dynamics [1, 2, 5, 28], rumour spread models [10],

first-passage percolation [3, 29] and agent-based models [14]. More specifically, we highlight

the use of stochastic differential equations for representative voters and the microstruc-

ture of elections [7], and a point process model based on the assumption that fake news

spreads as a two-stage process [19]. The simultaneous transmission of both information

and misinformation (or hoaxes) in communities, however, is still under development. The

most promising approaches consider contagion processes in networks [24, 25, 26, 27] and

agent-based models [6, 9, 21].

In this article, we explore in greater depth the paradigmatic model of Funk et al [13]

that has been used to describe the intricate dynamics of awareness spread. This model has

been commonly used in conjunction with compartment-based epidemic models, for which

analysis is often performed in the limit of large population sizes. For this reason, we are

primarily interested in the dynamics of the information network in this same limit. Readers

familiar with the literature in probability will recognise the model by Funk et al [13] as

a random recursive tree [18, 20] with a rewiring mechanism, or a preferential attachment

tree [4, 11, 17]. As we will show in this article, the model exhibits an unusual dynamic

in infinite populations: it instantaneously forms long branches, which then immediately

collapse to a tree of depth two; it then slowly rearranges to a star-like configuration in a

process that takes infinite time.

The article is organised as follows. In Section 2, we introduce the model and key

definitions that will be important to express our main results in Section 3. In the model,

individuals are represented by nodes which are linked whenever information is exchanged

between them. One informed node is defined as the root, while the remaining nodes initially

have no information. In the infinite population size limit, our theorems show that an

information tree containing all nodes forms instantly almost surely, while it takes infinite

time until everyone obtains information of the best quality. In this same limit, we show that

nodes have depth 2 almost surely at any time t > 0, yet, the longest branch ever formed in

the tree scales with the logarithm of the population size. This suggests a strange behaviour

of the model, where long branches form and collapse in a fraction of time. Proofs of the

theorems are provided in Section 4.
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Figure 1: Snapshots from two simulations of the information network with different sized

populations. (a) Typical structure at t = 0.1 for a population of N = 100; nodes are

spread over several layers and some are yet to attach. (b) Typical structure at t = 0.1 for

a population of N = 1000; nodes are almost entirely condensed into the first two layers.

2 The model and key definitions

Consider a population of identical individuals modelled as nodes in an evolving network.

One node is distinguished as the root, to be thought of as the originator of a piece of

information. It is convenient to label the nodes by non-negative integers and adopt the con-

vention that node zero is the root. To each pair of nodes (i, j) we associate an independent

unit-rate Poisson clock; whenever this clock rings we draw a directed edge from i to j (and

delete all other out-edges from i) if j is strictly closer to the root. Figure 1 shows snapshots

of two simulations of the model, restricted to N = 100 and N = 1000 nodes.

This is the network model that underlies the early-time and large-population dynamics

of the disease awareness model introduced in [13]. In that work, individuals are classified

by their information level, with zero representing first hand information (in the epidemic

context, someone currently infected) and generally level n describing people for whom in-

formation has travelled n steps to reach. In our model the information level of a node

corresponds to its distance from the root. Two extra processes were included in [13] that

we do not include here: the fading of information (spontaneous lowering of an individual’s

information level) and generation of new information (when an infection takes place, the
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infected individual jumps to information level zero). We have chosen to leave out these el-

ements in order to focus on the dynamics of the information network pertaining to a single

initial piece of information. For an analysis of finite-size effects when information fading is

included, see our companion work [22].

Definition 1. Let τij be the set of (random) times when nodes i and j interacted (whether

any edges are redrawn or not). We use νi(t) to denote the information level of node i at

time t. Naturally, ν0(t) = 0 ∀t ≥ 0, while for i > 0 we have

νi(t) = 1 + inf{νj(s) : j ̸= i, s ∈ τij , s < t} , (1)

where we assume the convention inf{∅} = ∞.

Many of our results require examination of finite subsets of the population. To that end

we introduce for i > 1 the information level of node i when it only has sight of the first N

nodes in the network:

νNi (t) = 1 + inf{νNj (s) : j ̸= i, s ∈ τij , s < t, j ≤ N}, (2)

where again νN0 (t) = 0 ∀t ≥ 0.

We note that it is not a priori obvious that the model is well defined in the case of an

infinite population. However, the random variables νNi (t) are monotonically non-increasing

in N , which allows us access to several almost sure results characterising the large N limit.

3 Main results

Initially, the network is empty and all nodes are uninformed except the root. The only

stationary configuration is the star graph in which every node is attached to the root. Our

first results concern the time evolution of the graph in between these limits.

Theorem 1 (The graph is a tree). Denote by TN the time until nodes {0, . . . , N − 1} are

all informed (i.e. are connected to the information network), then

P
(

lim
N→∞

TN = 0

)
= 1.

Theorem 2 (The graph is never a star). Let T ∗
N be the first hitting time of the star config-

uration amongst the first N nodes. That is, T ∗
N = inf{t : maxi<N νNi (t) = 1}, then

P
(

lim
N→∞

T ∗
N = ∞

)
= 1.
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The next results characterise the shape of the tree as it evolves. We find that at all

positive times, the tree has a maximum depth of two, and compute the probability to find

a given node at a particular depth.

Theorem 3 (The tree has maximum depth 2). For all t > 0,

P
(

lim
N→∞

max
i<N

{νNi (t)} ≤ 2

)
= 1.

Theorem 4 (Node depth distribution). Let τi0 be the time when node i first interacted with

the root. For all t > 0, and all nodes i ̸= 0,

P
(

lim
N→∞

νNi (t) = 1 + 1τi0>t

)
= 1,

where, by definition of the model, 1τi0>t is Bernoulli distributed with parameter e−t. Fur-

thermore, for all i ̸= 0,

P
(

lim
t→0+

νi(t) = 2

)
= 1.

Hitherto, our theorems have mostly concerned the state of the system at any given time

t in the limit of infinite network size. The previous result combined with our next theorem

probes the early time limit t→ 0, establishing the entrance law of the process in the system

with an infinite number of nodes.

Theorem 5 (There is always at least one node with depth one).

P
(

lim
t→0+

inf
i ̸=0

{νi(t)} = 1

)
= 1.

The above results characterise the instantaneous arrangement of the infinite network into

a tree of depth two. Amongst the first N nodes, however, one can show that branches of

depth logN are certain to have existed at some point. This implies an interesting explosive

behaviour in which arbitrarily long branches form and then immediately collapse.

Theorem 6 (Longest branch). Consider the length of the longest branch ever formed in

the network amongst the first N nodes, DN = max({νNi (t), t > 0, i ≤ N} \ {∞}). This

quantity grows logarithmically with N , specifically,

lim
N→∞

P
(
DN

logN
∈ [e/2, e]

)
= 1.

Together, these results give a complete characterisation of the (somewhat strange) dy-

namics of the information network: the graph instantaneously forms a tree with long

branches which then promptly collapse to depth two; it then takes an infinitely long amount

of time to slowly rearrange itself towards a star-like configuration.
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4 Proofs of the main theorems

In this section we provide the proofs for the main theorems stated in Section 3. We also

give two corollaries that relate Theorems 1 and 2 to the variables νNi (t).

Proof of Theorem 1. For the system with N nodes {0, . . . , N − 1}, TN is the sum of N − 1

independent random variables,

TN =
N−1∑
n=1

Wn,N , (3)

where we defineWn,N as the time between the n-th and n+1-th nodes joining the informed

group. By definition, W0,N = 0, since the initial condition is one node at level 0.

The transition from n informed nodes to n+1 occurs when one of the N −n uniformed

nodes interacts with one of the n informed nodes in any information level. This transition

occurs at a rate n · (N − n). The transition time Wn,N is then exponentially distributed

with rate n(N − n), mean (n(N − n))−1, and variance (n(N − n))−2. Hence,

E[TN ] =
N−1∑
n=1

E[Wn,N ] =
N−1∑
n=1

1

n(N − n)
=

1

N

N−1∑
n=1

(
1

n
+

1

N − n

)
,

=
2

N

N−1∑
n=1

1

n
=

2HN−1

N
, (4)

Var[TN ] =
N−1∑
n=1

Var[Wn,N ] =
N−1∑
n=1

1

n2(N − n)2
=

1

N2

N−1∑
n=1

(
1

n
+

1

N − n

)2

,

=
2

N2

(
N−1∑
n=1

1

n2

)
+

4

N3

(
N−1∑
k=1

1

n

)
=

2

N2

(
π2

6
− ψ′(N)

)
+

4

N3
HN−1, (5)

where Hn =
∑n

k=1
1
k is the n-th harmonic number, and ψ′(N + 1) is the first derivative of

the digamma function.

We will use the Borel-Cantelli lemma to prove almost sure convergence. Observe that

TN > 0 and TN > ε⇒ T 2
N > ε2. Thus, for all ε > 0,

P
(
TN > ε

)
= P

(
T 2
N > ε2

)
≤

E[T 2
N ]

ε2
,

≤ 1

ε2

[
2

N2

(
π2

6
− ψ′(N)

)
+

4

N3
HN−1 +

4H2
N−1

N2

]
, (6)

by Chebyshev’s inequality, where we used E[T 2
N ] = Var[TN ] + E[TN ]2.
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Fix ε > 0, and consider the set of events Aε
N = {TN > ε}. It follows that

∞∑
N=1

P(Aε
N ) =

∞∑
N=1

P
(
TN > ε) ≤

∞∑
N=1

1

ε2

[
2

N2

(
π2

6
− ψ′(N)

)
+

4

N3
HN−1 +

4H2
N−1

N2

]
.

It is easy to see that the sum converges. By the Borel-Cantelli Lemma, it follows that

P
(
lim supN→∞Aε

N

)
= P

(
lim supN→∞{TN > ε}

)
= 0.

To complete the proof, let εk, k ∈ N be a sequence of decreasing times such that εk <

εk−1, εk > 0 and limk→∞ εk = 0. Hence, Aεk
N ⊂ A

εk+1

N , and

P
(
∪ε>0 lim sup

N→∞
Aε

N

)
≤

∞∑
k=1

P
(
lim sup
N→∞

Aεk
N

)
= 0. (7)

Consequently,

P
(

lim
N→∞

TN = 0

)
= 1,

and the result is proved.

The previous proof that the graph is a tree shows that the time until all nodes in the

population are aware is almost surely zero. Hence, all nodes, and in particular the maximum

of the population, have to be aware almost surely at any time t > 0. This suggests the

following proposition, which relates the previous result with the maximum information level

in the population.

Proposition 1. For all times t > 0,

P
(

lim
N→∞

max
i<N

{νNi (t)} <∞
)

= 1.

In fact, Theorem 3 is a stronger version of this proposition, so we will not prove this weak

form here.

Proof of Theorem 2. Similarly to the previous case, supi<N νNi (t) = 1 iff all nodes have

interacted with the root, i.e., the graph is a star. Thus, the time until the star is formed

can be written as the sum of the transition times between each node connecting to the root.

That is, the time T ∗
N until the star forms is again the sum of N − 1 independent random

variables,

T ∗
N =

N−1∑
n=1

Vn,N . (8)
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where we define Vn,N as the time between the n-th node and the n+1-th connecting to the

root. Again, V0,N = 0, as there is one node at level 0 from the beginning.

The transition from n to n + 1 nodes occurs when one of the remaining N − n nodes

not connected to the root interacts with the root. This transition has rate 1 · (N − n).

The transition time Vn,N is then an exponentially distributed random variable with rate

(N−n), mean (N−n)−1, and variance (N−n)−2. Consider now the set of random variables

{Vn}∞n=1 such that Vn = 1
nXn, where Xn ∼ Exp(1) are i.i.d. Observe that Vn ∼ Exp(n).

Instead of writing T ∗
N as a sum of random variables that depend on N , we can use the set

{Vn}∞n=1 to write

T ∗
N =

N−1∑
n=1

Vn =

N−1∑
n=1

1

n
Xn. (9)

By the monotone convergence theorem, T ∗
N → T ∗ ∈ R ∪ {∞}.

We will show that T ∗ = ∞ by contradiction. First, consider the random variable

SM =
1

M − 1

M∑
N=2

T ∗
N =

1

M − 1

M∑
N=2

N−1∑
n=1

1

n
Xn, (10)

=
1

M − 1

M−1∑
n=1

(M − n)
Xn

n
, (11)

=

(
1 +

1

M − 1

)
T ∗
M − 1

M − 1

M−1∑
n=1

Xn. (12)

Assume T ∗ is finite. Then, limM→∞
T ∗
M

M−1 = 0 almost surely. Since limM→∞ T ∗
M

a.s.−−→ T ∗,

it follows that limM→∞ SM
a.s.−−→ T ∗. Additionally, by the Strong Law of Large Numbers,

limM→∞
1

M−1

∑M−1
n=1 Xn

a.s.−−→ 1. Taking the limit M → ∞ in Equation (12) leads to T ∗ =

T ∗ − 1, contradicting our assumption that T ∗ is finite. Thus, T ∗ = ∞ and T ∗
N → ∞ almost

surely.

The previous theorem can be written in terms of the νNi (t) variables as the following

corollary.

Corollary 1. At all times t > 0,

P
(

lim
N→∞

max
i<N

νNi (t) > 1

)
= 1.

The star graph has all nodes, excluding the root, at depth 1. Since the maximum is a.s.

not at depth 1, the tree cannot be a star.
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Proof of Theorem 3. Taking the system with nodes {0, . . . , N − 1}, consider first the prob-

ability that the maximum information level in the population has depth greater than 2.

This is equivalent to the probability that at least one node has depth greater than 2.

For i > 0, we define the variables τ1ij as the time when the first meeting between nodes i

and j occurs. Note that τ1ij are i.i.d. Exp(1) random variables. Now, fix t > 0 and consider

the events At
ij = {τj0 < τ1ij < t}, i.e., the event that node j exchanged information with the

root before interacting with node i for the first time before time t. Using the fact that the

random variables τ1ij and τj0 are independent, it follows that

P
(
At

ij

)
=

∫ t

0

∫ s

0
e−τ × e−s dτds =

1

2
e−2t(et − 1)2 = εt > 0. (13)

The events At
ij are mutually independent for fixed i and varying j, since meetings

between nodes are independent. Furthermore, if event At
ij occurred, then νNi (t) ≤ 2.

Consequently,

P
(
νNi (t) > 2

)
≤

N−1∏
j ̸=0, j ̸=i

P
(
(At

ij)
c
)
= (1− εt)

N−2. (14)

Let F t
N = {maxi<N νNi (t) > 2}. Thus,

P
(
F t
N

)
= P

(
N−1⋃
i=1

{νNi (t) > 2}

)
≤

N−1∑
i=1

(1− εt)
N−2 = (N − 1)(1− εt)

N−2. (15)

Therefore,

∞∑
N=1

P
(
F t
N

)
=

∞∑
N=1

(N − 1)(1− εt)
N−2 = ε−2

t <∞.

By the Borel-Cantelli Lemma,

P

( ∞⋂
k=1

∞⋃
N=k

{
max
i≤N

{νNi (t)} > 2

})
= 0. (16)

Thus,

P
(

lim
N→∞

max
i≤N

{νNi (t)} ≤ 2

)
= 1, (17)

and Theorem 3 is proved.

Proof of Theorem 4. We will first prove the following lemma:
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Lemma 1. For all t > 0, and all nodes i ̸= 0,

P (νi(t) = 1 + 1τi0>t) = 1,

where 1 + 1τi0>t is the Bernoulli random variable that the node interacted with the root yet

or not.

Proof. Consider the system with infinite nodes. As before, we define the variables τij as the

time when the first meeting between nodes i and j occurs, but this time only for 0 ≤ i < j.

For i > 0, we define again the random variables,

µi(t) = 1 + inf
j>i

{µj(τij) : τij < t}, µi(0) = ∞, µ0(t) = ν0(t) = 0, (18)

in this case, µi(t) is the quality of information of node i when we allow the nodes to

meet and exchange information with nodes j, j > i only once. Considering again the events

At
ij = {τj0 < τij < t}, i.e., the event that node j exchanged information with the root before

interacting with node i before time t. Recall that the events At
ij are mutually independent

for different j. Moreover, for all t > 0,

∞∑
j=i+1

P(At
ij) =

∞∑
j=i+1

εt = ∞, (19)

where εt is the same as in Equation (13). Thus, by the converse Borel-Cantelli lemma,

P
(⋃

j>iA
t
ij

)
= 1, for any t > 0. Therefore, at least one of the events At

ij occurred (in fact,

infinitely many of them). Consequently,

P(νi(t) ≤ 2) ≥ P(µi(t) ≤ 2) = 1. (20)

Since νi(t) ≤ 2 ⇒ νi(t) ∈ {1, 2}, and P(νi(t) = 1) = 1 − e−t, the probability that node

i interacted with the root, it follows that P(νi(t) = 2) = e−t. As a final step, note that

νi(t) = 1 ⇐⇒ {τi0 < t}, by definition. Ergo, 1 + 1τi0>t and νi(t) are defined in the same

probability space (Ω,F ,P), and

P({ω ∈ Ω : νi(t)[ω] = 1 + 1τi0>t[ω]}) = 1 =⇒ P (νi(t) = 1 + 1τi0>t) = 1. (21)

To complete the proof of Theorem 4, note that limN→∞ νNi (t) = νi(t) by Definition 1.

Thus, from Lemma 1,

P
(

lim
N→∞

νNi (t) = 1 + 1τi0>t

)
= 1,

10



and since P(τi0 > 0) = 1 given τi0 ∼ Exp(1), it follows that

P
(

lim
t→0+

νi(t) = 2

)
= 1,

and the Theorem is proved.

Proof of Theorem 5. Define the random variablesXn = inf
i ̸=0,i≤n

{
νi

(
n−α

)}
and Yn = inf

i ̸=0

{
νi

(
n−α

)}
,

for fixed α ∈ (0, 1), that is, Yn is the infimum information level when considering all nodes

in the infinite tree at time n−α, while Xn is the infimum information level of the subset of

nodes {1, . . . , n} of the infinite tree.

Note that, almost surely, Yn ≤ Xn,∀n, and 1 ≤ Yn. Hence,

1 ≤ lim
t→0+

inf
i ̸=0

{νi(t)} = lim
n→∞

Yn ≤ lim
n→∞

Xn. (22)

We want to show that Xn
a.s.−−→ 1 as n→ ∞. By definition, infi ̸=0,i≤n{νi(t)} > 1 ⇔ ∀ i ̸=

0, i ≤ n, νi(t) > 1, i.e., not a single node has interacted with the root before time t. As we

know, the probability that a given node did not interact with the root before time t is e−t.

Thus, P (Xn > 1) = e−n1−α
, and

∞∑
n=1

P (Xn > 1) =

∞∑
n=1

e−n1−α
<∞. (23)

By the Borel-Cantelli lemma,

P
(
lim
n→∞

Xn > 1
)
= 0 =⇒ P

(
lim
n→∞

Xn = 1
)
= 1, (24)

because {Xn > 1}c = {Xn = 1}.
Therefore,

P
(
lim
n→∞

Yn ≤ 1
)
= P

(
lim
n→∞

Yn = 1
)
= P

(
lim
t→0+

inf
i ̸=0

{νi(t)} = 1

)
= 1. (25)

Proof of Theorem 6. In our model, the tree is frequently reshaped by reattachment events

that move nodes closer to the root. Moreover, the rate and consequences of these events

depends on the configuration of the tree. It will turn out, however, that long branches form

before any reattachment event has occurred.
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Recall that τij denotes the set of times that nodes i and j are in contact, and the

information level of node i at time t in the finite-N model is defined as

νNi (t) = 1 + inf{νNj (s) : j ̸= i, s < t, j ≤ N, s ∈ τij} . (26)

Introduce the restricted set of times τ̃ij = τij \ (inf{t : νNi (t) <∞},∞) in which all contact

events after the initial attachment of i are discarded. These times define a coupled instance

of the model in which reattachment is ignored via

ν̃Ni (t) = 1 + inf{ν̃Nj (s) : j ̸= i, s < t, j ≤ N, s ∈ τ̃ij} . (27)

Since contact events can only lower the information level of a node, we immediately have

the bound

νNi (t) ≤ ν̃Ni (t). (28)

Additionally, the two processes are identical up to the random time t⋆N of the first reat-

tachment event. To control the maximal informational level in the original model, we will

consider the structure of the coupled process at time t⋆N and in its end state.

The network constructed by the process ignoring reattachment is an instance of a random

recursive tree [18, 20]. Write D̃M for the length of the longest branch of this tree when it

has M nodes. Pittel [20] proved that D̃M/ logM
a.s.−−→ e as M → ∞. This result translates

immediately to an almost sure upper bound on the original model via (28). Specifically,

DN < D̃N implies

P
(

lim
N→∞

DN

logN
≤ e

)
= 1, (29)

which in turn implies the convergence in probability upper bound in the statement of

Theorem 6.

For the lower bound on DN , we will compute the size M⋆
N of the random recursive tree

at time t⋆N . It will turn out that M⋆
N is of order

√
N .

First note that the rate of attachment events when the informed tree has size n is

n(N − n), while the rate of reattachment events is smaller than n(n − 1). Therefore, the

probability qn, that an attachment event occurs before a reattachment event when the tree

has size n is bounded from below by

qn ≥ n(N − n)

n(N − n) + n(n− 1)
=
N − n

N − 1
. (30)
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It will in fact be neater to study M⋆
N+1, since we may compute

P(M⋆
N+1 ≥ m) ≥

m∏
n=1

qn =
N !

(N −m)!Nm
(31)

Using the well-known factorial bounds

√
2πN

(
N
e

)N
e

1
12N+1 < N ! <

√
2πN

(
N
e

)N
e

1
12N , (32)

it follows that

P(M⋆
N+1 ≥ m) >

√
NNNe−N+ 1

12N+1

√
N −m(N −m)(N−m)e

−N+m+ 1
12(N−m)Nm

,

=

(
N

N −m

)N−m+ 1
2

e
−m+ 1

12N+1
− 1

12(N−m) ,

≥ exp
{
−m2

N + m
2N + 1

12N+1 − 1
12(N−m)

}
,

where we have used the inequality log(N −m) ≤ logN − m
N .

To understand the scaling law of MN we consider m = Nα, where 0 < α ≤ 1. From the

above we obtain

P(M⋆
N+1 ≥ Nα) ≥ exp

{
−N2α−1 + 1

2N
α−1 + 1

12N+1 − 1
12N(1−Nα−1)

}
. (33)

Thus, for all α < 1/2

lim
N→∞

P(M∗
N+1 ≥ Nα) = 1 , (34)

and in particular

lim
N→∞

P
(
2 logM∗

N+1 ≥ logN
)
= 1 . (35)

To end the proof of Theorem 6, we note that DN ≥ D̃M⋆
N
, where it is known that almost

surely D̃M⋆
N
/ logM⋆

N → e as M⋆
N → ∞. So, for any ϵ > 0 we may choose N large enough

that

P ({2DN > (1− ϵ)e(2 logM⋆
N )} ∩ {2 logM⋆

N ≥ logN}) > 1− ϵ .

Sending ϵ→ 0 and passing to large N we obtain

lim
N→∞

P
(
DN

logN
≥ e

2

)
= 1. (36)
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