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Stochastic drift in discrete waves of non-locally interacting-particles

Andrei Sontag,∗ Tim Rogers, and Christian A. Yates
Centre for Mathematical Biology,

Department of Mathematical Sciences,
University of Bath, Bath, BA2 7AY, UK

(Dated: January 19, 2023)

In this paper, we investigate a generalised model of N particles undergoing second-order non-local
interactions on a lattice. Our results have applications across many research areas, including the
modelling of migration, information dynamics and Muller’s ratchet – the irreversible accumulation of
deleterious mutations in an evolving population. Strikingly, numerical simulations of the model are
observed to deviate significantly from its mean-field approximation even for large population sizes.
We show that the disagreement between deterministic and stochastic solutions stems from finite-
size effects that change propagation speed and cause the position of the wave to fluctuate. These
effects are shown to decay anomalously as (logN)2 and (logN)3, respectively – much slower than

the usual
√
N factor. As a result, the accumulation of deleterious mutations in a Muller’s ratchet

and the loss of awareness in a population are processes that occur much faster than predicted by
the corresponding deterministic models. The general applicability of our model suggests that this
unexpected scaling could be important in a wide range of real-world applications.

Keywords: Discrete waves, stochastic drift, non-local interactions

I. INTRODUCTION

Models of interacting particles on lattices are ubiqui-
tous. Their applications range from spin interactions [1],
to voter models [2, 3], and epidemics [4–6], to cite but
a few. Moreover, lattice models are particularly conve-
nient to describe the movement of animals, microorgan-
isms and cells [7, 8]. Given their importance, research
has also been devoted to study interacting-particle lattice
models with no particular application in mind [9–11].

Due to their complexity, the analysis of these stochastic
systems is often non-trivial. Numerical simulations and
deterministic approximations are common approaches to
gain insight into complex interacting-particle systems.
Stochastic simulations allow for a higher degree of realism
and precision at the expense of increased computational
cost and limited generalisation and understanding of the
results obtained. In contrast, an easy-to-extend analyti-
cal result is often sought by the introduction of moment-
closures and the hydrodynamic limit, which provide more
accessible deterministic equations. This approach is fre-
quently dubbed a ‘mean-field approximation’ [12].

The power of mean-field approximations, to reduce
complexity of stochastic systems by neglecting noise ef-
fects, makes this analytical device a cornerstone in math-
ematical biology modelling. For many stochastic systems
in biology, the effects of finite size populations are fre-
quently small, decaying as the square root of the popu-
lation size. Thus, the use of mean-field approximations
provides a simplified — but still complex — description
of the systems’ dynamics that can be analysed by dynam-
ical systems’ theory without appreciable loss in accuracy
and predictability [13].

∗ ams284@bath.ac.uk

Although these deterministic approximations usually
describe well systems with many particles – or the av-
erages of numerous simulations – conclusions drawn
from them should be evaluated cautiously. Stochastic-
ity causes an assortment of fascinating dynamics not
predicted by the mean-field approximation. For in-
stance, noise can amplify and maintain seasonality in epi-
demics [14], induce bistability in collective behaviour [15],
or even completely reverse the direction of deterministic
selection [16].

In this article, we investigate a generalised model of N
particles undergoing second-order non-local interactions
on a lattice. The basic model we build upon was first
introduced as an ‘awareness spread’ model in [17], con-
comitantly with disease dynamics, to investigate the ef-
fect of behavioural reactions on epidemics. In this model,
subpopulations are characterised by an index i ∈ N0 that
gives the quality of the information held by an individ-
ual. The smaller the value of i, the better the informa-
tion quality. The awareness dynamics are simple: infor-
mation can be transmitted from a better informed indi-
vidual to another, losing quality in the process, which
increases the index of the receiving individual by 1 after
transmission; and individuals spontaneously lose aware-
ness if their information is not refreshed, also increasing
the index by 1. The ‘awareness spread’ model exhibits
stochastic wavefront solutions. This and the discrete na-
ture of the individual’s ‘information quality’ index are
the two distinguishing features of this model that attract
our attention. For this reason, our model will consist of a
fixed-size population embedded in a generalised discrete
space that can be either abstract – such as the ‘infor-
mation quality space’ in the awareness model, and the
‘niche space’ in genetics – or real space. Thus, our gener-
alised model has applications in many areas of research,
ranging from ecology to collective motion, cell division
and motility, and evolution. In particular, the original

mailto:ams284@bath.ac.uk
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FIG. 1. The stochastic waves (colours) propagate faster
than the deterministic solution (dashed). The position of the
wave at a given time fluctuates from simulation to simulation,
flattening the average curve (solid black line). The parameters
used to generate the figure are: N = 103, t = 400, α =
0.5, β = 0, λ1 = 1 and λ2 = 0 (see Sec. II for the model
description). Initial condition: n50(0) = N .

model can be understood as a Muller’s ratchet. Named
after Hermann Joseph Muller, Muller’s ratchet refers to
an irreversible process in evolutionary genetics by which
asexual populations accumulate deleterious mutations as
a consequence of genetic drift and mutation, amplified by
a small population size [18].

As we will see, numerical simulations have shown sub-
stantial differences between the stochastic waves and
the corresponding mean-field approximation in the two
cases agreement could be expected, i.e., for large num-
ber of particles and for the average of many simulations.
As we will demonstrate later through numerical simula-
tions and analytically, applying the cut-off method de-
veloped by Brunet and Derrida [19], this disagreement
is caused by the drift and fluctuation of the stochastic
wavefront, effects that decay respectively as (logN)−2

and (logN)−3 with the population size, N , much slower

than the usual
√
N factor. Readers familiar with the

work of Kurtz [20] or Van Kampen [21] may find this
difference surprising. Indeed, it is a proven theorem that
the fluctuations in the number of individuals at index i
at time t will decay as 1/

√
N [22]. The important thing

to note here is that the question of the speed of a wave
does not concern events taking place up to a certain point
in time, but rather the time elapsed until a certain event
takes place. This small-seeming semantic difference has a
fundamental impact on the large-N scaling laws, as seen
here and elsewhere (e.g. [23]).

Fig. 1 gives an example of this discrepancy. Although
the deterministic solution captures well the shape of in-
dividual realisations of the stochastic wave, there is a
significant difference in wave speed between them. Fur-

thermore, by default, the deterministic solution does not
reproduce the fluctuations in the wavefront position that
lead to a flattened average curve. A consequence of these
effects is a much faster accumulation of deleterious mu-
tations in the ratchet model, and similarly the loss of
awareness in a population, than predicted by the deter-
ministic limit.

The anomalous scaling observed in the convergence of
the speed of propagation and diffusion of the wavefront
position has been studied in the literature in the con-
text of partial differential equations (PDEs) with a cut-
off [24, 25], branching Brownian motion [26, 27], and dif-
fusing particle systems that interact locally [28–31]. The
novelty in our work comes from analysing a more general
model of interacting-particles that perform a biased ran-
dom walk on a semi-infinite lattice and non-local inter-
actions with rate which depends on the distance between
particles. We show that this model can be analysed in
terms of a cumulative variable for which the dynamics,
under certain conditions, can be approximated by dis-
crete KPP-like equations. In this case, the equations
depend only on the rate at which particles jump large
distances.

The article is organised as follows. In Sec. II, we gen-
eralise the model introduced in [17]. We introduce a
moment-closure to obtain a system of ODEs that ap-
proximate the dynamics of the system in Sec. III, and
take the continuous limit in Sec. IV to obtain an Integro-
PDE description. For particular cases, a useful change
of variables yields a generalised Kolmogorov-Petrovsky-
Piscounov (KPP) equation [32]. Results are presented
in Sec. V. In particular, we obtain an analytical correc-
tion for the stochastic wavefront’s speed and compare
this prediction to results from simulations. In Sec. VI we
discuss and give insight into other classes of models that
we expect to present similar disagreement between the
stochastic and the mean-field solutions.

II. MODEL

The model we study here is a generalisation of an
awareness spread model introduced in [17]. The authors
couple the awareness dynamics to a SIR model to study
the interplay of disease outbreaks and behavioural re-
sponses – prompted by awareness transmission in the
population. In [33], the model was extended to include
contrasting behaviours regarding the transmission of in-
formation, with individuals seeking information of better
or worse quality depending on the subpopulation they
belong to.

Our system consists of a population of fixed size, N , in
which each individual X has an associated index i ∈ N0

indicating the state in which the individual is. In the
awareness spread model, this corresponds to the quality
of the information that the individual has.

The governing dynamics of our generalised model are:
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1. Pairwise copying,

Xi +Xj
f(i−j)−−−−→ 2Xi. (1)

2. Individual updates,

Xi

λ1

⇄
λ2

Xi+1. (2)

We assume that the pairwise copying occurs with a
rate given by a function of the difference in states be-
tween the two interacting individuals, f : R → R+

0 . In
the definition above, f(z) is a function with inputs in on
Z, but later on its domain will be extended to R. This
modelling choice of f is motivated by competition kernels
commonly adopted in the ecological and evolutionary lit-
erature [34, 35] which depend on the species’ distance in
niche space. In contrast to these models, the function f
is not necessarily even; f(x) ̸= f(−x) in general. This
uneveness is a necessary condition to observe the prop-
agation of stochastic wavefronts that disagree with its
mean-field approximation (see Appendix A for details).

The second interaction can be interpreted as a biased
random walk on a lattice. In an awareness model, the on-
wards reaction accounts for a memory loss process in the
population (individuals will slowly lose awareness with
rate λ1 if their information is not refreshed), whereas the
backwards reaction describes the finding of better qual-
ity information, through research or similar means, with
rate λ2.

In the original model, [17], information transmission
occurs solely from the better informed individuals to the
worst informed, f(i − j) = α · θ(j − i), where θ(z) is
the Heaviside function, and the spontaneous acquisition
of better information is absent, λ2 = 0. In that case, if
we index by i = 0 the source of information, then the
subscript i of an individual indicates how many times
the acquired information has faded. Once all sources of

the best quality of information have faded, there is no
way to generate new information. Hence, information is
gradually lost and eventually disappears if not refreshed.
This model can also be interpreted as a Muller’s ratchet,
where the index i counts the number of deleterious muta-
tions that an individual has accumulated. Competitors
with fewer mutations outcompete their rivals and repro-
duce. The offspring then replaces the losing competitor
in the population to keep its size constant.

Besides the Muller’s ratchet interpretation, our model
has several applications in distinct areas of research for
more general interaction functions, f . As an ecological
model, it can be understood as a species competing for
resources and performing a biased random walk on a lat-
tice. As a continuous-time evolutionary model, we may
take the index i as the individual’s position in fitness
space, whilst λ1 and λ2 give the rates of mutation to
worse and better fitnesses and the function f(z) is the
competition kernel between different strains. As a cell
cycle-synchronisation process, λ1 gives the rate at which
cells progress to the next phase of their cycle, λ2 = 0,
and the function f synchronises their phase.

To facilitate the analysis of this stochastic model, in
the next section, we introduce its corresponding mas-
ter equation and derive a system of ODEs based on a
moment-closure approximation. In Sec. IV we take the
hydrodynamic limit to obtain a continuous description of
the model, and obtain results on the dependency of the
speed of propagation of the wavefront on the choice of
functions f(z) that motivate the rest of our work.

III. MOMENT-CLOSURE APPROXIMATION

Using master equations, we can describe the evolution
of probabilities for Markov processes that evolve over
time from one state to another [12]. For this system,
the master equation reads

∂

∂t
p(n0, n1, ...; t) =

∞∑
i=0

∞∑
j=0

f(i− j)

N
(ni − 1)(nj + 1) · p(n0, n1, ..., ni − 1, . . . , nj + 1, . . . ; t)

+

∞∑
i=0

(ni + 1)λ1 · p(n0, n1, ..., ni + 1, ni+1 − 1, . . . ; t)

+

∞∑
i=0

(ni + 1)λ2 · p(n0, n1, ..., ni−1 − 1, ni + 1, . . . ; t)

−

 ∞∑
i=0

∞∑
j=0

f(i− j)

N
ninj +

∞∑
i=0

(λ1 + λ2)ni

 · p(n0, n1, . . . ; t), (3)

where p(n0, n1, . . . ; t) is the probability that, at time t, there are n0 individuals in state 0, n1 in state 1, and so
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on. Furthermore, we assume p(n0, n1, . . . , ni, . . . ; t) = 0
if ni < 0 for any i. Note that

∑∞
i=0 ni = N , so only a

finite number of ni’s will be non-zero at any given time.
Although the master equation gives a more precise de-

scription of the time evolution of the system, it is often
not possible to solve analytically. A common approach
used to obtain insight about the dynamics of the model
is the mean-field approximation. Multiplying Eq. (3) by
nk and summing over the state space gives

d⟨nk⟩
dt

=
∑
i

〈
nkni

f(k − i)

N

〉
−
∑
i

〈
nkni

f(i− k)

N

〉
+λ1⟨nk−1⟩ − (λ1 + λ2)⟨nk⟩+ λ2⟨nk+1⟩.

Despite being an exact equation for the mean popu-
lation size in each compartment, this system of equa-
tions is not closed, as it depends on second-order mo-
ments. To close the system, we assume the moment clo-
sure ⟨ninj⟩ = ⟨ni⟩⟨nj⟩ for any i and j, including i = j,
obtaining the following mean-field approximation,

d⟨nk⟩
dt

=λ1⟨nk−1⟩ − (λ1 + λ2)⟨nk⟩+ λ2⟨nk+1⟩

+
1

N

∑
i

⟨nk⟩⟨ni⟩ (f(k − i)− f(i− k)) . (4)

This equation is already useful for some calculations we
will develop later, however, in order to take advantage
of the literature on PDEs, and to obtain results that
motivate our work, we need to take the continuous limit.

IV. THE CONTINUOUS LIMIT

One may recognize Eq. (4) as an on-lattice discreti-
sation of a drift-diffusion jump process with a reaction
term (see, e.g., [36, 37]). In these models, it is common
to introduce the variable u(x, t) as the continuous limit
of the vector n(t) = [n0(t)/N, n1(t)/N, . . . ]. This yields
the corresponding Integro-PDE description of the system
(for details of the derivation of the continuum limit see,
for example, [8])

∂u

∂t
= (λ2 − λ1)h

∂u

∂x
+

(λ1 + λ2)h
2

2

∂2u

∂x2
(5)

+

∫ ∞

0

u(x, t)u(y, t) [f(x− y)− f(y − x)] dy,

where h is the lattice cell size, and u(x, t) is the density
of the population in the interval [x, x+ dx) at time t.

We use boundary conditions u(∞) = ux(∞) = 0, and

0 =(λ1 − λ2)hu(0, t) +
(λ1 + λ2)h

2

2

∂u(0, t)

∂x
, (6)

which enforce conservation of mass. Because, u(x, t) ≥
0,∀x, and

∫∞
0

u(y, t)dy = 1, u(x, t) can be interpreted
as a probability density function. This, and the in-
tegral term, suggest the change of variable U(x, t) =∫ x

0
u(y, t)dy, the cumulative sum of the number of indi-

viduals with position y < x, in order to simplify Eq. (5).
Note that U(0) = 0 and limx→∞ U(x) = 1. Without loss
of generality, we will take h = 1 for the rest of this paper,
unless stated otherwise.

Integrating Eq. (5) on the interval (0, x) yields

∂U

∂t
= (λ2 − λ1)

∂U

∂x
+

(λ1 + λ2)

2

∂2U

∂x2

+

∫ x

0

u(y, t)

∫ ∞

0

u(z, t) [f(y − z)− f(z − y)] dzdy.

This is now an equation for the new variable U(x, t).
We can work further on the double integral with integra-
tion by parts,

∫ ∞

0

u(z, t) [f(y − z)− f(z − y)] dz

= [U(z, t)(f(y − z)− f(z − y))]∞0

−
∫ ∞

0

U(z, t)(f ′(y − z)− f ′(z − y))dz,

= f− − f+ −
∫ ∞

0

U(z, t)(f ′(y − z)− f ′(z − y))dz,

where f± = limz→∞ f(±z), and the derivatives f ′(z)
must be understood in the weak sense. Substituting back
yields

∂U

∂t
= (λ2 − λ1)

∂U

∂x
+

(λ1 + λ2)

2

∂2U

∂x2
+ U(f− − f+)−

∫ x

0

u(y, t)

∫ ∞

0

U(z, t)(f ′(y − z)− f ′(z − y))dzdy.

This is a reaction-advection-diffusion equation for the
variable U(x, t) which may have wavefront solutions de-
pending on the choices of f(z). Note that the integral

contribution is of order higher than linear. Provided that
this contribution is sufficiently small compared to the lin-
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ear term, we can linearise the equation,

∂U

∂t
= (λ2 − λ1)

∂U

∂x
+

(λ1 + λ2)

2

∂2U

∂x2
+ U(f− − f+),

and look for wavefront solutions, with speed v, of the
form U(x, t) = U(x + vt) = Ceγ(x+vt), where γ is the
exponential growth rate at the front of the wave. Substi-
tuting results in an expression relating v and γ,

γ(v + λ1 − λ2) =
(λ1 + λ2)

2
γ2 + (f− − f+). (7)

As for any KPP-equation, Eq. (7) gives a family of
pairs (v, γ). The direction of propagation is determined
by the sign of v, which depends on parameter values. The
critical speed is given by

vc = (λ2 − λ1) + 2 sgn(f− − f+)

√
(λ1+λ2)

2 |f− − f+|,

which agrees with previous results on generalised-KPP
equations [38]. If f−−f+ > 0, then the wave propagates
with speed v ≥ vc, whilst v ≤ vc if f

−−f+ < 0. Notably,
the speed of propagation depends on f(z) only through
the difference f− − f+, i.e., the limits limz→±∞ f(z).

In Appendix B we analyse polynomial functions of the
distance between interacting states and show that, for
a modification of the original model [17], no wavefronts
are obtained in this case. In this paper, we focus on
choices of f(z) that lead to wavefronts. Consequently,
the dependency of the wave speed only through the limits
limz→±∞ f(z) motivates us to investigate functions of the
form f(z) = α · θ(−z) + β · θ(z) for any choice of real α
and β as a proxy for more general functions as a means to
obtain analytical results that can be easily extended. In
the next section, we develop the results obtained by this
choice of f(z). In particular, we observe a discrepancy
between the deterministic solutions and the average of
many simulations, as well as for large population sizes
– limits in which the mean-field approximation is often
assumed to be a good description of a stochastic system.
In Sec. VI we discuss what other classes of functions are
expected to present similar disagreement with the mean-
field solution.

V. RESULTS

For our choice of f(z) = α ·θ(−z)+β ·θ(z), the discrete
system of equations in the mean-field approximation is

d⟨nk⟩
dt

=λ1⟨nk−1⟩ − (λ1 + λ2)⟨nk⟩+ λ2⟨nk+1⟩

+
α

N

∑
i>k

⟨nk⟩⟨ni⟩ −
β

N

∑
i<k

⟨nk⟩⟨ni⟩, (8)

or, for the new variable Uk(t) =
1
N

∑k
i=0⟨ni(t)⟩,

dUk

dt
= λ1Uk−1 − (λ1 + λ2)Uk + λ2Uk+1

+ (α− β)Uk(1− Uk). (9)

Hence, in the mean-field approximation, the system with
non-local jumps to earlier (left) or later (right) states
with rates α and β, respectively, is equivalent to the sys-
tem with non-local jumps to the left with rate α − β if
α > β, or to the right with rate β − α if β > α. Note
that the continuous limit of Eq. (9) yields an advection-
reaction-diffusion equation with logistic growth. In the
case λ1 = λ2 = λ, the advection term vanishes, and we
obtain a Kolmogorov-Petrovsky-Piscounov (KPP) equa-
tion [32],

∂U

∂t
= λ

∂2U

∂x2
+ (α− β)U(1− U). (10)

KPP-equations are one of the most fundamental mod-
els in mathematical biology [39], commonly used to de-
scribe population dynamics in space and time. A well-
known feature of this class of equations is the existence
of a family of wavefront solutions defined by γ > 0 with
speed v(γ) = λγ + ζ

γ , where ζ = α − β > 0. For gen-

eral, non-negative, initial conditions, the wave propa-
gates with speed v ≥ vc = 2

√
λζ, achieving the criti-

cal speed vc for well-behaved initial conditions. Wave-
fronts with speed v < vc require γ to be complex, and
are thus not physical, as convergence to these solutions
is not achieved by any realistic initial condition. We ex-
pect our discrete system of equations to exhibit similar
behaviour.

A. Numerical Results

In this section, we investigate the behaviour of the
stochastic wave numerically for our choice of f(z), and
compare it to the solution of the deterministic system of
equations, Eq. (8). Without loss of generality, we will
assume α > β for the rest of this paper, unless stated
otherwise. The case α = β is a special case of a sym-
metric jump, and hence, agrees well with the moment-
closure approximation (see Appendix A). All conclusions
obtained for α > β hold directly for β > α with λ1 and
λ2 interchanged, and reflected state direction.
Fig. 1 compares a stochastic simulation of the system

and the solution of the discrete system of equations for
λ2 = 0. This case is of special interest as it corresponds to
the original awareness spread model [17] and to a Muller’s
ratchet. There is significant disagreement between the
two solutions, with the stochastic wavefront propagat-
ing faster than its deterministic counterpart. This ef-
fect suggests that the accumulation of deleterious muta-
tions in a population, or the loss of awareness, are pro-
cesses that occur faster than predicted by the determin-
istic model. This might have critical consequences for
the survival of species, or the outcome of an epidemic,
in which the spread of awareness plays a vital role in
eliciting behavioural reactions and increasing adoption
of non-pharmaceutical interventions.
Another case of interest is λ1 = λ2 = λ. In this setting,

the advection term vanishes and the wavefront propa-
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FIG. 2. Comparison between the stochastic and the deter-
ministic systems for λ1 = λ2 at different instants of time, t.
The solution of the ODE system, Eq. (9), (dashed) is faster
than the stochastic waves (colours). The flattening of the sim-
ulations’ average (solid black line) is caused by fluctuations
in the position of the stochastic wave from realisation to re-
alisation. Parameters: N = 104, α = 1, β = 0, λ1 = λ2 = 1.
Initial condition: n250(0) = N .

gates to lower states (α > β). This movement is driven by
individuals migrating leftwards as a result of the sponta-
neous update to a previous state and the pairwise copying
interactions. Fig. 2 compares the stochastic simulation
and the mean-field solution in this case. In contrast to
the previous figures, the stochastic wave translates with
lower speed than its deterministic counterpart. This ap-
parent contradiction has a simple, intuitive explanation.

In general, given α > β, we can expect the stochastic
wave to be on the right of the corresponding determinis-
tic solution for any values of λ1 and λ2. Since the pop-
ulation sizes in the deterministic solution are continuous
variables, states that would be otherwise empty in the
stochastic system always have a small non-zero density.
Wave propagation is largely affected by these levels, par-
ticularly the left-most occupied ones, since pairwise copy-
ing enables large and non-local jumps. Consequently,
‘jumps back’, i.e. to any earlier state, are always pos-
sible in the mean-field solution – even if the equivalent
stochastic jumps are not. Therefore, interactions that
transport individuals to the left are more frequent in the
deterministic than in the stochastic system. Numerical
results for different values of λ1 and λ2 confirm this pre-
diction (data not shown).

Besides the dissimilar speed of the stochastic wave,
Fig. 2 exhibits a flattening of the averaged curve as time
progresses. This is caused by the diffusion of the wave-
fronts’ position for different simulations at the same in-
stant of time t. Despite the curves being similar in shape
for each simulation, their position at a given time is dif-
ferent, resulting in an averaged curve that flattens as time
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FIG. 3. The stochastic wave (turquoise, yellow and orange)
and the solution of Eq. (8) (brown) plotted at different times,
t. The stochastic wave slowly drifts, whilst the deterministic
solution remains static. Parameters: N = 104, α = 1, β = 0,
λ1 = 4, λ2 = 1. Initial conditions as explained in text.

progresses, indicating a diffusion in the co-moving frame
of reference. In Breuer et al. [28], the authors investi-
gate fluctuations on the stochastic wavefront of a system
of particles X that diffuse and react locally according to
X+Y ⇄ 2X with constant concentration of particles Y .
Their analysis is restricted to a continuous approxima-
tion of the lattice system, but notably, they observe the
same flattening of the average curve as we. They suggest
that this deviation arises from an asymmetrical influence
of the large fluctuations of the wave front position upon
its average drift, which are neglected by the linear noise
approximation.
As we have seen, given our choice of interaction-

function, f , and α > β, the wave propagates to the
right if the outward update and pairwise copying are
the only interactions (λ2 = 0), and to the left if indi-
vidual updates to both directions occur with same rate
(λ1 = λ2 = λ). One might then ask if there is a choice
of parameters that balances right and left movement and
keeps the wave static. Linearising the mean-field ODEs
and setting vc = 0 gives the relation ζ = (

√
λ1 −

√
λ2)

2

(see Appendix C for details). In Fig. 3 we show the so-
lution of the deterministic system of equations and the
stochastic simulation for this choice of parameters. To
obtain the figure, we started with the initial condition
n50(0) = N for the deterministic equations and then used
the stationary distribution after the system had time to
converge as initial condition for the stochastic system.
We note a qualitative difference between the stationary
mean-field solution and the stochastic simulation, which
slowly drifts to higher states.
A key result so far has been the different speeds with

which the stochastic and deterministic waves propagate.
Numerical simulations for other choices of f(z) satisfying
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the conditions limz→−∞ f(z) = α and limz→∞ f(z) = β
have shown similar behaviour (see Appendix D for some
examples). In the next section, we obtain a correction for
the speed of the stochastic system and the diffusion rate
of the wave’s position between realisations of the system
by making use of the cut-off theory developed by Brunet
and Derrida [19]. These effects are shown to decay as
(logN)−2 and (logN)−3 with the population size, N .

B. The wavefront speed correction

In this section, we analyse the model further with the
aid of the cut-off method to obtain an analytical estimate
of the speed of propagation of the stochastic wavefront.
The cut-off method, developed by Brunet and Derrida
[19], mimics the discrete nature of the population density
in the stochastic wavefront by defining a cut-off on the
deterministic equation in which the density at a given
point is set to zero if it takes values below the cut-off
threshold. Following a similar approach, we derive the
speed correction for spatially-discrete variables and com-
pare the results to numerical simulations.

In the previous section, we observed that the stochastic
wavefronts are slower than the deterministic solution if
λ1 = λ2 = λ, for our choice of f(z) and α > β. The oppo-
site has been observed if λ2 = 0, but λ1 ̸= 0. Despite this
apparent dissonant behaviour, if we substitute the prop-
agation speed of the stochastic wave into Eq. (7), we get
a complex value of γ in both cases. In the deterministic
model, solutions with complex γ are not physically pos-
sible – or meaningful – as the densities become negative.

For our choice of f(z) = αθ(−z) + βθ(z) and α > β,
the copying mechanism creates a bias towards the left,
such that the position of the left-most occupied states
dictate wave propagation, independently of its direction,
rather than the bulk behind it. The position of the best
informed individual dictates the position of the bulk, as
copies of states at the front of the wave are more frequent
than copies of positions at the back. Additionally, in the
original information spread model [17] with λ2 = 0, once
the best-informed individual fades from k to k + 1, the
k-quality information is lost and cannot be recovered.

This remarkable dependency on the left-most occu-
pied sites of the wave allows us to focus our atten-
tion on the fluctuations in its far front and ignore the
more complicated aspects of the highly-correlated noise
brought about by non-local interactions. Combining the
discreteness and pulled characteristic of the stochastic
wave, Brunet and Derrida [19] suggested the implemen-
tation of a cut-off in the corresponding PDE description
of the system to compute a correction of the wavefront
propagation speed. In this framework, the density solu-
tion is set to zero if it reaches a threshold value, εN . The
adoption of a cut-off in the deterministic solution cir-
cumvents the issue of non-zero densities infinitely far in
front of the wave, which causes the change in wave speed
compared to the stochastic model. A natural choice is
εN = 1

N , to match the discreteness scale of the stochas-
tic wave.
We will follow their work in [19] to derive a similar

wave speed correction for the discrete system of equa-
tions, Eq. (9), for the variable Uk(t), the cumulative sum
of subpopulations in states i ≤ k. A similar derivation is
presented in [40] for the model studied in [28] which yields
a discrete logistic KPP-equation, with λ1 = λ2 = 1. Re-
call, we have assumed f(z) = αθ(−z)+βθ(z) and α > β.
The same derivation holds for α < β by interchanging
λ1 and λ2, and reflecting the state-space such that left
becomes right and vice-versa.
We first highlight the observed property that the popu-

lation “bulk” maintains its shape as it translates through
the states. This is a reasonable assumption if the rear-
ranging of individuals within the bulk is much faster than
the movement of the bulk itself.
If v is the signed speed of the wavefront, we may define

the co-moving coordinate x = k − vt, where k is our
discrete variable that gives the state of an individual.
Let wv(x) be the shape of the wavefront that propagates
with speed v. Without loss of generality, we can define
a reference position, µt, such that wv(µt) =

1
2 . We can

then define a cut-off distance L > 0 where wv(µt − L) =
εN and specify that wv(µt−y) = 0, if y > L. Fig. 4 gives
a schematic picture of our definitions.
For simplicity, we may assume k ∈ Z. We then look

for travelling waves solutions wv(x) such that Uk(t) =
wv(k − vt) is a solution to the cut-off problem,


−v

dwv

dx
= λ1wv(x− 1)− (λ1 + λ2)wv(x) + λ2wv(x+ 1) + ζwv(x)(1− wv(x)), x > µt − L,

wv(x) = εN , x = µt − L,

0, otherwise.

(11)

As discussed, the asymptotic behaviour of the front for
x → −∞, when the density is close to zero, determines
the speed of propagation of the wavefront. Hence, we
can look for solutions of the linearised equation. For x >

µt − L, the ansatz wv(x) = Ceγx = Ceγ(k−vt) gives the
following relationship between γ and v, when substituted
in Eq. (11),

− γv = λ1(e
−γ − 1) + λ2(e

γ − 1) + ζ. (12)
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FIG. 4. A schematic representation of the definitions
adopted in the cut-off approach to estimate the speed of prop-
agation of the stochastic wavefront. The deterministic solu-
tion is set to zero if it assumes values below the cut-off thresh-
old, εN (hatched region). This occurs at a distance L from
the reference position, µt. Note the log-scale in the y-axis.

The values of the pairs (v, γ) that satisfy the above
expression can be obtained using the geometric method,
i.e., by taking v as a parameter and graphing the func-
tions g(γ) = −γv and h(γ) = λ1(e

−γ−1)+λ2(e
γ−1)+ζ

to find the points where the two functions intersect. The
left-hand-side of the expression defines a family of func-
tions indexed by v, whereas the right-hand-side is inde-
pendent of v. Thus, depending on the value of v, the
above expression can have zero, one, or two real solu-
tions for the pair (v, γ). In particular, the point where
the solution is unique defines the critical values (vc, γc).
Note that the sign of v and vc gives the direction of wave
propagation, which depends on the system’s parameters.

The deterministic wave will propagate with the criti-
cal speed vc, whilst the stochastic wave propagates with
speed v in the parameter region where γ assumes com-
plex values. Let ∆ = vc − v, i.e., the difference in speed
between the deterministic and the stochastic wave and
γ = γr + iγi, where γr is the real part and γi the imag-
inary part of the complex γ corresponding to the speed
v of the stochastic wave. The solutions for the linearised
equations then take the form,

wv(x) = [Av sin(γix+ ϕv) + o(1)]eγrx (13)

for −L < x ≪ 0 and v(γ) = v(γr + iγi) as given by
Eq. (12), and constants Av and ϕv. By definition, vc =
v(γc) and v′(γc) = 0. If ∆ is small, the speed is close to
critical. Expanding v(γ) up to second order around γr
yields

v(γr + iγi)= v(γr) + iγiv
′(γr)−

γ2
i

2
v′′(γr) + o(γ3

i ),

= vc −∆ (by definition). (14)

Comparing the first and second lines of Eq. (14) gives

γr = γc, γ2
i =

2∆

v′′(γc)
. (15)

We now use the translational invariance to set ϕv = 0,
and noticing that lim∆→0 Av sin(γiz) = o(1), since the
sine factor is absent for waves with speed vc because γ is
real, we get

wvc−∆(x)=
A

γi
sin (γix) e

γrx

= A

√
v′′(γc)

2∆
sin

(√
2∆

v′′(γc)
x

)
eγcx, (16)

where A is a constant that depends on initial conditions.
By assumption, this solution must be close to zero

when z ∼ −L, i.e.,

−

√
2∆

v′′(γc)
L ∼ −π =⇒ ∆ =

π2v′′(γc)

2L2
.

Furthermore, since the sine function varies much more
slowly than the exponential, and wvc−∆ ∼ εN for z ∼
−L, we expect e−γcL ∼ εN , i.e., L ∼ − log εN

γc
. Therefore,

v = vc −∆ ∼ vc −
π2γ2

c v
′′(γc)

2 log2 εN
= vc −

π2γ2
c v

′′(γc)

2 log2 N
, (17)

if we take εN = N−1.
Eq. (17) is the same expression obtained by Brunet and

Derrida [19]. The difference here from the usual KPP

equation is the function v(γ) (given by v(γ) = γλ+ ζ
γ in

the PDE case) that gives the speed of propagation as a
function of the exponent γ. Dumortier et al. [24] showed
that the first-order correction in the propagation speed
predicted by Brunet and Derrida holds for a large class
of cut-off functions.
The dependence of the correction, Eq. (17), on the

parameters is hidden inside γc and v′′(γc). To obtain
insight on how the parameters affect the speed correc-
tion, note that the deterministic approximation will be
better if |γ2

c v
′′(γc)| is small. From Eq. (12), it follows

that γ2
c v

′′(γc) = −γc(λ1e
−γc + λ2e

γc). Hence, |∆| → 0
as γc → 0. In particular, γc = 0 ⇐⇒ ζ = 0, i.e., either
particle interaction is symmetric or they do not inter-
act. This is consistent with the result in Appendix A,
where we showed that the deterministic approximation
describes the average of the simulations exactly if parti-
cle interactions are symmetric.
The dependence of γc on the parameters is expressed

through the following transcendental equation

λ1e
−γc(1 + γc) + λ2e

γc(1− γc) + ζ − λ1 − λ2 = 0. (18)

To get some insight on how γc changes with the param-
eters for γc near zero, we Taylor expand Eq. 18 around
γ = 0 up to second order to get

γ2
c =

2ζ

λ1 + λ2
. (19)



9

Thus, in order to get a better match between the deter-
ministic and stochastic solutions we need ζ → 0, so that
the non-local interactions are absent or completely sym-
metrical. Alternatively, we could increase the values of
λ1 and/or λ2. Since λ1 and λ2 are local, spontaneous in-
teractions, they break the spatial correlation ⟨ni(t)nj(t)⟩
created by the non-local interactions, allowing the model
to be better approximated by the mean-field solution.

Note the anomalous (logN)−2 scaling of the speed cor-
rection with the population size, N . This scaling in-
dicates a much slower decay of the stochastic effects of
small population sizes than the usual N− 1

2 scaling. In
Fig. 5 we compare this prediction with the speed of prop-
agation of the stochastic wavefront for different popula-
tion sizes, N , for the cases λ2 = 0 (the original model)
and λ1 = λ2 = λ. Although the (logN)−2 scaling seems
to be correct, the scaling constant (the slope of the line
in the plot) seems to disagree with the one predicted by
the cut-off approach, suggesting the constant in Eq. (17)
may be different. Alternatively, the limitations of the
cut-off method for small N and the slow scaling of the
correction suggest that the agreement between numeri-
cal results and the theoretical prediction may improve for
larger population sizes.

Besides the difference in wave speeds, we also observed
in Sec. VA the fluctuation of the wavefront’s position as
a result of stochastic effects. Let DN be the diffusion of
the wavefront position from realisation to realisation,

DN = lim
t→∞

⟨µ2
t ⟩ − ⟨µt⟩2

t
, (20)

where ⟨ · ⟩ is the average over realisations.
A result derived by Brunet and Derrida [19] for KPP-

equations with cut-off also suggest that the diffusion rate,
DN , scales with the population size as

DN =
π4γcv

′′(γc)

3 log3 N
, (21)

where γc and v′′(γ) are model dependent. Note again
the extremely slow scaling of this diffusion rate (of order
(logN)−3) with the population size N . In Fig. 6 we ver-
ify this prediction by plotting the diffusion constant ob-
tained from the stochastic simulations for different pop-
ulation sizes, N . As before, the log3 N decay seems to
be correct, as well as the constant of proportionality.

The anomalous scalings observed indicate that fluctua-
tions in the wavefront’s position and differences in speed
of propagation with respect to predictions of the mean-
field approximation are observed even for large popula-
tion sizes. This effect of stochasticity can have critical
real-world consequences. Particularly, in the case λ2 = 0,
corresponding to the Muller’s ratchet and the original
awareness spread model, the stochastic wave propagates
faster than its deterministic counterpart even for very
large population sizes. This suggests that the accumula-
tion of deleterious mutations in a population reduces its
overall fitness and makes it more susceptible to extinc-
tion, whilst the loss of awareness reduces the adoption of
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FIG. 5. The speed of propagation of the stochastic wavefront
(squares) for different population sizes. The error bars give
the standard deviation of the simulations for each population
size. Upper figure: α = 0.5, β = 0, λ1 = 1, λ2 = 0. Bottom
figure: α = 1, λ1 = λ2 = 1

2
, β = 0.

non-pharmaceutical interventions in epidemics, leading
to increased disease transmission. Moreover, these re-
sults affects predictions on the success of invading species,
which frequently model interactions between species by
deterministic KPP-equations [41], by altering the speed
with which they occupy a new environment.

Despite the good agreement of Brunet and Derrida’s
corrections observed for many models, the apparent dis-
agreement with the constant observed for our model is in
line with previous research [26, 29, 42]. One reason could
be the contributions from all space scales to the fluctu-
ations, not just from the very front or the very end of
the wave, in contrast to most branching particle systems
studied by Brunet and Derrida. These contributions lead
to stronger spatial-scale correlations in our model, which
are expected to lead to larger disagreements with the
moment-closure approximation. A different scaling fac-
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FIG. 6. The diffusion constant of the stochastic wavefront
(squares) for different population sizes. Parameters: α = 0.5,
β = 0, λ1 = 1 λ2 = 0.

tor is also observed by Brunet et al. [26] in a model of
branching particles with selection and stronger spatial
correlations.

In the next section, we discuss and give insight on other
classes of models that we expect to show similar disagree-
ment between the stochastic and the mean-field solutions.

VI. DISCUSSION

Mean-field approximations are cornerstones of mathe-
matical biology. They are often used to derive simplified
deterministic equations for stochastic systems. These ap-
proximations usually describe well systems with many
particles and the averages of numerous simulations. De-
spite this, stochasticity is often the origin of fascinating
effects not predicted by the mean-field equations.

In this paper, we investigated a generalised model for
awareness spread in a population. This generalisation
can be used as a toy model in several areas of research,
ranging from ecology to epidemics, cell motility and evo-
lution. We showed that this model, under a useful change
of variables, is described by a KPP-equation and exhibit
wavefront solutions. We observed that the deterministic
solution obtained through the mean-field approximation
of this model does not agree well with the average of nu-
merous stochastic simulations. The disagreement comes
from finite-size effects that cause fluctuations in the posi-
tion of the stochastic wave and change its speed of prop-
agation. These stochastic effects are shown, through the
application of the cut-off theory and numerical simula-
tions, to decay with the population size N as (logN)−3

and (logN)−2, respectively, much slower than the fre-

quently observed N− 1
2 scaling. Hence, the accumulation

of deleterious mutations in a Muller’s ratchet, leading

to a faster fitness loss and increased risk of extinction,
and the loss of awareness in populations are effects ob-
served to occur faster in the stochastic model than pre-
dicted by the deterministic theory, even for larger popu-
lations. Although our results were obtained for the choice
of f(z) = α · θ(−z) + β · θ(z), numerical simulations for
other choices of f(z) such that limz→−∞ f(z) = α and
limz→∞ f(z) = β have been consistent with our observa-
tions.
The versatility of the cut-off theory has led to a con-

siderable area of research on how a cut-off affects the
speed of propagation of deterministic reaction-diffusion
equations of the KPP type [43–46], to cite but a few.
Some work has been done to apply this methodology to
on-lattice systems and some specific interacting-particle
stochastic models with local interactions [29, 40]. Yet,
the question of what general class of individual-based
stochastic models are expected to present this anoma-
lous scaling is still unanswered. Here, we tried to pro-
vide some insights on this problem. We hypothesize that
any model with wave propagation lead by particles at its
front and linear growth for small densities should have
the anomalous log2 N scaling observed for our model,
although models with stronger, non-local, spatial inter-
actions might have a different scaling constant than pre-
dicted by the cut-off theory. Examples explored in the lit-
erature are Branching Brownian motion and interacting-
particle systems on lattices. These are widely used in
chemistry, physics and mathematical biology modelling –
in areas that range from ecology to cell motility, epidemi-
ology, evolution and collective behaviour. The ubiquity
of these models in research highlights the importance of
studying and understanding the effects of stochasticity
in wave propagation to pinpoint the extension to which
results derived from established deterministic models are
valid.
Further work would be welcomed on extending the

classes of models that show anomalous scaling with the
population size. Another direction for research would be
to explain why some models agree well with the speed
correction derived by Brunet and Derrida, whilst others
present a different scaling constant. This has proven to
be difficult. Tentative research has been developed in
this aspect [43] with a probabilistic investigation of the
foremost occupied site. The theory is, however, not pre-
dictive, reducing the extent of its applicability. Finally,
the derivation of more and improved analytical results
for spatially discrete stochastic systems based on the cut-
off framework would be a fruitful direction of research,
as most of the analysis developed so far has concerned
PDEs and continuous space.
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Appendix A: Symmetric jumps

In this appendix we show that, when pairwise copying
is unbiased, i.e. f(x) = f(−x), then the deterministic
approximation describes the average of the simulations
exactly.

Recall that Eq. (3) gives the master equation of our
general model. Multiplying this equation by nk and sum-
ming over the state space gives

d⟨nk⟩
dt

=
∑
i

〈
nkni

f(k − i)

N

〉
−
∑
i

〈
nkni

f(i− k)

N

〉
+λ1⟨nk−1⟩ − (λ1 + λ2)⟨nk⟩+ λ2⟨nk+1⟩. (A1)

By assumption, f(k − i) = f(i − k). Hence, the two
sums cancel, and we are left with

d⟨nk⟩
dt

= λ1⟨nk−1⟩ − (λ1 + λ2)⟨nk⟩+ λ2⟨nk+1⟩. (A2)

As the equations depend solely on first-order moments,
no moment closure approximation is required and the re-
sult is exact. The average over many simulations and
the solution of this system of equations must agree well.
Therefore, asymmetric jump rates are a necessary condi-
tion to observe disagreement.

Appendix B: Linear functions of the distance

In this appendix, we investigate the case where f(z)
increases linearly with the difference between states and
show that the system achieves a stationary distribution
rather than wave propagation.

Let us analyse a modification of the original model
in [17] where two-body jumps occur only to better qual-
ities of information with rate that depends linearly on
the distance between two levels. This case is described
by f(z) = α · θ(−z), where θ is the Heaviside function,
and λ2 = 0. For this choice of f(z), the discrete system
of mean-field equations becomes

dn0

dt
= −λ1n0 +

α

N
n0

∞∑
j=0

j · nj , k = 0,

dnk

dt
= −λ1nk + λ1nk−1 +

α

N
nk

∞∑
j=0

nj(j − k), k > 0,

where we have used the mean-field approximation
⟨ninj⟩ = ⟨ni⟩⟨nj⟩, and written ⟨ni⟩ 7→ ni. Denoting

k = 1
N

∑
j · nj , the average state in the population, the

previous equations can be written as
dn0

dt
= −λ1n0 + αn0k, k = 0,

dnk

dt
= −λ1nk + λ1nk−1 + αnk(k − k), k > 0.

To get the steady states, we set the derivatives to zero.
The equation for k = 0 gives nst

0 = 0 or k = λ1

α . The
first condition gives nst

k = 0, whereas the second gives

nst
k =

λ1

αk
nst
k−1 =⇒ nst

k =

(
λ1

α

)k−k0

· 1

(k − k0)!
nst
k0
,

(B1)
where k0 corresponds to the first non-zero level in the
initial condition of the system. In particular, k0 = 0 for
the Kronecker delta initial condition, nk = N ·δ0,k. It fol-
lows that the distribution at the steady state is Poisson,
with rate λ1/α and support on [k0,∞) . The normalisa-
tion condition then gives nst

k0
= Ne−λ1/α. Thus, taking

k0 = 0 for simplicity,

nst
k = N ·

(
λ1

α

)k
e−λ1/α

k!
= N · Poiss(λ1/α). (B2)

Using linear analysis of the steady states, we can show
that the trivial state is always unstable. The numerical
solution of the discrete system of equations agrees well
with this result. We note, however, that in the stochastic
system, P[nk(t) = 0] = 1 as t → ∞ for all k.
An interesting corollary of this Poisson distribution of

the steady states is that the average level and variance of
the population can be easily obtained to be k = Var(k) =
λ1

α . A similar approach applied to any polynomial func-

tion f(z) will render f̄st = 1
N

∑
f(j) · nst

j = λ1

α with
unstable trivial steady state since limj→∞ f(j) = ∞.
Numerical results indicated good agreement with these
predictions (not shown).

Appendix C: Stationary deterministic wave

In this appendix, we find a relationship between the
model’s parameters that result in a stationary wave so-
lution for Eq. (9).
Assuming ζ = α − β > 0, i.e., the pairwise copying

is biased towards left-movement, and that particles are
allowed to move right with rate λ1 and to move left with
rate λ2, we would expect λ1 > λ2 in the stationary sys-
tem, if it exists, to counter-balance the λ2 and ζ rates of
movement to the left. But what is the exact relationship
between the parameters?
In this case, the mean-field equations take the form

dUk

dt
= −(λ1 +λ2)Uk +λ1Uk−1 +λ2Uk+1 + ζUk(1−Uk).

Looking for solutions of the form Uk(t) = Ceγ(k−vt), of
the linearised equation, we get the following expression
for the speed of propagation,

− γv = ζ − (λ1 + λ2) + λ1e
−γ + λ2e

γ . (C1)

Note that, taking λ2 = 0 gives the expression obtained
for the model with only fading, and taking λ2 = λ1 gives
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the expression for the fading-and-finding model, as ex-
pected. This expression gives a family of solutions for
(γ, v) where the right and left sides of the equation inter-
sect (geometric method). To find the critical speed, we
differentiate both sides w.r.t γ to obtain

− v = −λ1e
−γ + λ2e

γ = 0 =⇒ eγ =

√
λ1

λ2
. (C2)

Substituting back gives

0 = ζ − λ1 − λ2 + λ1

√
λ2

λ1
+ λ2

√
λ1

λ2
,

ζ = (λ1 + λ2 − 2
√

λ1λ2) = (
√
λ1 −

√
λ2)

2. (C3)

Appendix D: Stochastic waves for other choices of
interaction-function f(z)

In this appendix, we give examples of other choices
of f(z) satisfying the conditions limz→−∞ f(z) = α and
limz→∞ f(z) = β and show numerically that they exhibit
similar behaviour as our choice f(z) = αθ(−z) + β(z).
For each figure, the corresponding function f(z) is plot-
ted as an inset.
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FIG. 7. Comparison between the deterministic solution of
Eq. (4) (dashed) and stochastic simulations (colors) for f(z) =
1
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4
(inset). For this f(z), limz→−∞ f(z) = 1

2
and limz→∞ f(z) = 0. Note the similarity with Fig. 1. The
parameter values used to generate the figure are: N = 103,
t = 400, λ1 = 1, λ2 = 0. Initial condition: n50(0) = N .

Fig. 7 compares the stochastic simulations and the so-
lution of Eq. (4) for f(z) = 1

2π arctan(−z) + 1
4 . For this

f(z), f−−f+ = 1
2 as in Fig. 1. As expected, the stochas-

tic waves are to the right of the deterministic solution and
the waves’ position from realisation to realisation fluctu-
ates, flattening the average curve.

In Fig. 8 we compare the stochastic simulations and the
solution of Eq. (4) for f(z) = θ(−z − 5) + 1

2θ(z − 5). In
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FIG. 8. Comparison between the deterministic solution of
Eq. (4) (dashed) and stochastic simulations (colors) for f(z) =
θ(−z−5)+ 1

2
θ(z−5) (inset). For this f(z), limz→−∞ f(z) = 1

and limz→∞ f(z) = 1
2
, however, f− − f+ = 1

2
as before. The

parameter values are: N = 103, t = 400, λ1 = 1, λ2 = 0.
Initial condition: n50(0) = N (same as Fig. 1).

this case, f(z), limz→−∞ f(z) = 1 and limz→∞ f(z) = 1
2 ,

however, f− − f+ = 1
2 as before.
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FIG. 9. Comparison between the deterministic solution
of Eq. (4) (dashed) and stochastic simulations (colors) for
the function f(z) given by Eq. (D1) (inset). For this f(z),
limz→−∞ f(z) = 1 and limz→∞ f(z) = 1

2
, however, f−−f+ =

1
2
as before. The parameter values are: N = 103, t = 400,

λ1 = 1, λ2 = 0. Initial condition: n50(0) = N .

Finally, in Fig. 9 we make the same comparison, but
this time considering the function,

f(z) =


1, if z < −10,
1
2 sin(−

πz
12 ) +

3
4 , if − 10 ≤ z ≤ 10,

1
2 , if z > 10.

(D1)

As before, limz→−∞ f(z) = 1 and limz→∞ f(z) = 1
2 ,
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hence, f− − f+ = 1
2 .

Fig. 7, 8 and 9 hold several qualitative similarities to
Fig. 1. Particularly, the mismatching speed of propa-
gation between the stochastic and deterministic models,
the flattening of the average curve, and the fact that the

stochastic wave is always to the right of the determin-
istic solution. These suggest that our modelling choice
of interaction-function, f(z), is appropriate and that our
results can be extended for more general functions.
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