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INTRODUCTION TO THE SCIENTIFIC GEOGRAPHY SERIES
Scientific geography is one of the great traditions of contemporary geography. The scientific approach in
geography, as elsewhere, involves the precise definition of variables and theoretical relationships that can be
shown to be logically consistent. The theories are judged on the clarity of specification of their hypotheses
and on their ability to be verified through statistical empirical analysis.

The study of scientific geography provides as much enjoyment and intellectual stimulation as does any subject
in the university curriculum. Furthermore, scientific geography is also concerned with the demonstrated
usefulness of the topic toward explanation, prediction, and prescription.

Although the empirical tradition in geography is centuries old, scientific geography could not mature until
society came to appreciate the potential of the discipline and until computational methodology became
commonplace. Today, there is widespread acceptance of computers, and people have become interested in
space exploration, satellite technology, and general technological approaches to problems on our planet. With
these prerequisites fulfilled, the infrastructure needed for the development of scientific geography is in place.

Scientific geography has demonstrated its capabilities in providing tools for analyzing and understanding
geographic processes in both human and physical realms. It has also proven to be of interest to our sister
disciplines and is becoming increasingly recognized for its value to professionals in business and government.

The Scientific Geography Series will present the contributions of scientific geography in a unique manner.
Each topic will be explained in a small book, or module. The introductory books are designed to reduce the
barriers of learning; successive books at a more advanced level will follow the introductory modules to prepare
the reader for contemporary developments in the field. The Scientific Geography Series begins with several
important topics in human geography, followed by studies in other branches of scientific geography. The
modules are intended to be used as classroom texts and as reference books for researchers and professionals.
Wherever possible, the series will emphasize practical utility and include real-world examples.

We are proud of the contributions of geography and are proud in particular of the heritage of scientific
geography. All branches of geography should have the opportunity to learn from one another; in the past,
however, access to the contributions and the literature of scientific geography has been very limited. I
believe that those who have contributed significant research to topics in the field are best able to bring its
contributions into focus. Thus, I would like to express my appreciation to the authors for their dedication
in lending both their time and expertise, knowing that the benefits will by and large accrue not only to
themselves but to the discipline as a whole.

-Grant Ian Thrall
Series Editor
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SERIES EDITOR’S INTRODUCTION
Professor Andrei Rogers, a recognized world leading authority in population futures, turns his attention
here to regional population projection. By reading this book you can learn how to do subnational population
projections. Follow the presentation with pencil and paper at hand; trace with Andrei Rogers through the
mathematical analysis step by step, made clear and relevant by demonstrations of actual projections of
population futures at the regional level. The examples show how to calculate numerically regional population
growth rates, age compositions, and spatial distributions using data from several developed and less developed
countries.

Andrei Rogers demonstrates that projecting population futures at the regional level is both a rewarding
intellectual exercise and a powerful technique. Public and private institutions, organizations, and firms
require information on potential demographic futures. Public organizations must anticipate future needs and
thereby judge whether or not efforts should be launched to alter current population processes and trends.
Private firms maximize possible profits by adjusting product lines and shifting distribution networks using
information obtained from regional demographic projections.

By disaggregating national populations spatially, Andrei Rogers can analyze the evolution of multiple regional
populations, each interconnected by migration flows. The dynamics of the evolution of every subnational
human population is governed by the interaction of births, death, and migration. Individuals are born into a
population, with the passage of time they age and reproduce, and because of death or outmigration they
ultimately leave the population. These events and flows enter into an accounting relationship in which the
growth of the regional population is determined by the combined effects of natural increase (births minus
deaths) and net migration (inmigrants minus outmigrants).

Andrei Rogers adopts a geographical perspective by considering how fertility, mortality, and migration
combine to determine the growth, age composition, and spatial distribution of a national multiregional
population; his analysis considers simultaneously: several interdependent subnational population stocks; the
events that alter the levels of such stocks; the aggregate directions flows that connect these stocks to form a
system of interacting subnational populations.

This module should be of use to those responsible for carrying out regional population projections in public and
private organizations such as national, state, and local governments, business firms, foundations, universities,
labor unions, social service organizations, and various public interest groups. Students will find that this
work by Andrei Rogers contributes a new and significant dimension to human geography and anthropology,
sociology and demography, business marketing, regional economics, environmental studies, and city planning.

-Grant Ian Thrall
Series Editor
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1 INTRODUCTION
Population projections are numerical estimates of future demographic totals, usually obtained by the
extrapolation of past and current trends. Such calculations are fundamental inputs to social and economic
planning. They identify potential demographic futures, anticipate the needs that such futures are likely to
create, and provide a basis for judging whether or not efforts should be launched to alter current population
processes and trends.
The principal uses of population projections arise in connection with the planning activities of governmental
organizations and private firms. National, state, and local governments, business firms, universities, foun-
dations, labor unions, social service organizations, and various public interest groups all use population
projections. In addition to various expected population totals, their planning efforts may also require more
specialized types of projections, such as expected future numbers of teachers, classrooms, housing units,
medical personnel, hospital beds, nursery schools, day care centers, highways, dams – the list goes on and on.
Besides their uses in public and private planning activities, population projections also contribute to the
development of a better understanding of demographic phenomena. In particular, they “permit experiments
out of which we obtain causal knowledge; they explain data; they focus research by identifying theoretical
and practical issues; they systematize comparative study across space and time; they reveal formal analogies
between problems that on their surface are quite different; they even help assemble data” (Keyfitz, 1971, p.
573).

1.1 Subnational Population Projection: Geographical Perspective
The subject of this book is subnational population projection. As the modifier subnational suggests, the focus
is on the regional populations that collectively make up the national total. National populations are spatially
disaggregated, and attention is directed at the evolution of multiple regional populations interconnected by
interregional migration flows. It is this orientation that brings forth the particular contribution of geography
to demographic analysis.
In the absence of data on births, deaths, and migration, early efforts at population projection necessarily
relied on crude methods of extrapolating past observations, usually by fitting simple curves to the data.
But a curve may fit observed data for over a century with considerable accuracy and yet fail to predict
the situation for the next few years. The generally unsatisfactory results of curve-fitting efforts led to the
development of an approach that introduces the behavior of the principal components of population change
into the projection exercise-an approach in which trends in fertility, mortality, and migration are taken into
account in the projection of population totals. Chapter I examines both methods of population projection
and also presents the method used by the United Nations to generate urbanization projections.
Chapter 2 considers the consequences for subnational population projection of dividing an aggregate population
into spatially distinct, interacting regional populations that exchange migrants in both directions. This
permits one to associate gross migration flows with the regional populations that are exposed to the possibility
of experiencing them. Gone is the statistical fiction of the net migrant; an outmigrant from one region
becomes an inmigrant to another, creating a link between the two regional populations. As a result, instead
of considering the dynamics of population redistribution one region at a time, the analyst examines the
evolution of a complete system of interacting regional populations simultaneously in a single operation.
Although a number of useful results can be derived without introducing the age dimension into the analysis,
serio us systematic attention normally is accorded only to demographic projections that disaggregate population
totals by age. Such a disaggregation allows one to study the diverse demographic behavior of heterogeneous
subpopulations exhibiting differing propensities to experience events and movements. The incorporation of
such differences in a formal analysis further illuminates aggregate patterns of demographic behavior. Chapter
3 describes the demographer’s classical age-disaggregated single-region approach to population projection. It
sets out both the life table and the cohort-survival model and illustrates their application to subnational
population projection.
Finally, Chapter 4 integrates the age dimension of the demographer with the locational dimension of the
geographer. Populations disaggregated by age and region of residence are advanced over time and across
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space. Age dynamics are linked with spatial dynamics. Then a reinterpretation of migration between regions
as a transition between states of existence generalizes the multiregional projection model into a more general
class of models called multistate models. The mathematical apparatus for dealing with people moving from
one region to another turns out to be formally identical with one dealing with a wide class of transitions
that individuals experience during their lifetime: for example, transitions from healthy to ill, from single to
married, from employed to unemployed, and from being in school to having graduated. An example of the
multiregional/multistate model’s generality is illustrated in Chapter 4 below with a population projection
that is disaggregated by four different marital statuses and two regions of residence.

Age is usually the most important characteristic of a population in demographic calculations, and to ignore
its influence is to invite potentially erroneous findings. Nevertheless, a number of crude but useful results
can be derived even if age is disregarded in population projections – as it is in this chapter and the next.
Fundamental to these results is the notion of a rate of increase, a subject to which we now turn.

1.2 Rates of Increase and Exponential Growth
A population numbering P (t) at a time t and P (t+ l) a year later has exhibited an annual rate of increase of

r = P (t+ 1)− P (t)
P (t) (1.1)

and is said to have been growing at the rate of 100r% per annum. Continued growth at this rate for a decade
would mean a total population of

P (t+ 10) = (1 + r)P (t+ 9) = (1 + r)2P (t+ 8) = . . . = (1 + r)10P (t) (1.2)

or (1 + r)10 times the present population.

A convenient means of illuminating the consequences of an unchanging rate of increase is offered by the
concept of doubling time. If at the end of ten years a population is (1 + r)10 as great as it was a decade
before and (1 + r)n times as large at the end of n years, then the population’s doubling time is given by the
value of n that satisfies the equation

(1 + r)n = 2 (1.3)

Taking natural logarithms and dividing both sides by ln(1 + r) gives

n = ln 2
ln(1 + r) (1.4)

And recalling that the Taylor series expansion of ln(1 + r) is ln(1 + r) = r − r2/2 + r3/3− . . ., we obtain the
approximate solution

n = ln 2
r

.= 0.693
r

(1.4′)

when r is small enough for all terms beyond the first to be disregarded in the expansion. Keyfitz and Beekman
(1984) show that for commonly observed values of r among human populations (i.e., between 0 and 0.04), a
slightly more precise approximation is offered by n = 0.70/r, when r is compounded annually. We conclude,
therefore, that a population increasing at 2% per annum (r = 0.02) doubles in 35 years, at 3% in 23.3 years,
and at 4% in 17.5 years.

Interest is said to be compounded annually when a sum invested at the beginning of a year increases to (l+ r)
times its value by the end of the year. If the rate of increase r is compounded k times during the year, then
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the sum at the end will have grown to [1 + r/k]k times its value at the start of the year. When the rate is
compounded continuously, we have

lim
k→∞

[
1 + r

k

]k
= er (1.5)

where e is the base of natural logarithms and is equal to approximately 2.718. Thus, a population, P (t),
growing at 100r% a year compounded continuously (that is, the k becomes infinitely large), would total

P (t+ 1) = erP (t) (1.6)

by the end of a year, and over n years would grow to

P (t+ n) = ernP (t) (1.6′)

To reach this same total with annual compounding would require a rate of increase, r∗ say, that is slightly
larger than the corresponding continuous rate r. Specifically, recalling equations 1.2 and 1.6, we observe that

(1 + r∗)P (t) = erP (t) (1.7)

whence

r∗ = er − 1 (1.8)

Thus, for example, the population of Kenya, which has been increasing at about 4.0% per year compounded
annually, has been growing at the rate of 3.92% per year compounded continuously. Its doubling time, n,
under the latter model is defined by the relation

ern = 2 (1.9)

which satisfies equation1.4′ exactly and yields a value of 17.7 years.

So far, we have considered only fixed rates of increase, r. We now turn to time dependent variable rates of
increase r(t) and examine the population P (t) that evolves after T years of exposure to such a rate.

Imagine that the time interval of T years is divided into short subintervals dt in length and suppose that r(t)
over the first subinterval is r0, over the second is r1, and so on. If P (0) is the initial population total, then
P (0)er0dt is the total at time dt, and, writing eridt as exp[ridt], gives

P (T ) = P (0) exp[r0dt] • exp[r1dt] • exp[r2dt] • • • exp[rT−1dt] = P (0) exp[Σridt] (1.10)

As dt tends to zero, one obtains, in the limit, an integral in place of the summation:

P (T ) = P (0) exp
[ ∫ T

0
r(t)dt

]
(1.11)

Taking logarithms of both sides of 1.11 and then differentiating with respect to t yields the following definition
of the variable rate of increase:

r(t) = 1
P (t)

dP (t)
dt

(1.12)
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As Keyfitz (1977) points out, a convenient way of assessing the numerical effect of a variable rate of increase
on a population total is to apply the average rate across the entire time interval from zero to T :

P (T ) = P (0)er̄T (1.13)

where

r̄ =
∫ T

0 r(t)dt
T

(1.14)

1.3 Alternative Projections of National Population Growth and Urbanization
In 1980 the United Nations projected a population of 238 million for Indonesia in the year 2000 (United
Nations, 1980). Underlying that projection were the following assumed average annual rates of increase:
2.59% for the period 1975-80, 2.38% for 1980-90, and 1.89% for 1990-2000. This projection adds 16 million
more people to the year 2000 total projected three years earlier by the same agency, and it exceeds the
corresponding projection carried out by the World Bank in 1979 by some 31 million people. How are we to
judge whether the projection is reasonable or not?

The UN estimate of Indonesia’s population in 1975 is 136 million. During the preceding five years this
population was growing at an average annual rate of 2.6%. Were it to continue to grow at that rate, its total
by the year 2000 would be (equation 1.6′):

P (2000) = 136e0.026(25) = 261 million

total that exceeds the 1980 UN projection by some 23 million people.

One can argue that the 261-million figure is undoubtedly too high because the 1970-75 growth rate is likely
to decline as national development proceeds. The UN projection assumed a nonlinear pattern of decline to
1.89% by the 1990-2000 decade; alternatively, an assumed linear decline to 2.0% implies instead an average
growth rate of 2.3% during the 25-year period and projects a total population of

P (2000) = 136e0.023(25) = 242 million

Extrapolating this latter pace of decline into the twenty-first century drops the rate to zero by the year 2083.
If one assumes that this rate will remain fixed at zero forever thereafter, then 556 million is the corresponding
ultimate zero population growth (ZPG) total. Table 1.1 sets out these totals for Indonesia and compares
them with corresponding results for four other Southeast Asian nations.

TABLE 1.1 Historical Population Data and Alternative National Projections (in millions) to
the Year 2000 and Beyond

Alternative Projections
Historical Data Published Projections Trasnparent Models∗

Nation 1950 1975 UN80 UN77 World Bank Const. r Decl. r ZPG Yr. ZPG Pop.
Cambodia 4 8 16 13 16 16 15 2065 28
Indonesia 75 136 238 222 207 261 242 2083 556
Malaysia 6 12 22 20 20 25 22 2056 39
Philipines 21 44 90 83 76 103 87 2037 125
Thailand 20 42 86 76 69 95 81 2039 121
SOURCES: United Nations (1980), World Bank (1979), and Rogers (1981).
*Constant r means the 1970-1975 value given for the country in United Nations (1980); declingi r means a linear declline to
r=20 per thousnad by the year 2000; continuing this linear decline to zero gives, in the final two columns, the year at which zero
population growth (ZPG) first occurs and the ZPG total, respectively.
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Moving from national projections to regional ones, we let P (t), Pu(t), and Pv(t) denote, respectively, the
total, urban, and rural populations of a country at time t, and let m be the net outmigration rate from
rural areas. (We use the letter v as a subscript for rural area variables to avoid having the letter r denote
two different attributes: a rate of increase and a rural location.) Assume that the rate of natural increase
(birth rate minus death rate) of the urban population is equal to that of the rural population, both of them
therefore being equal to the national rate of increase r. (We assume a national population that is undisturbed
by international migration.) It follows, then, that

P (t) = P (0)ert (1.15)

Because the growth rate of the rural population will be the rate of natural increase, r, less the rate of net
outmigration to urban areas, m:

Pv(t) = Pv(0)e(r−m)t (1.16)

and, because the total population is the sum of its rural and urban subpopulations,

Pu(t) = P (t)− Pv(t) (1.17)

Such a simple model of population dynamics was adopted by Keyfitz (1980) to illuminate a number of
demographic aspects of the urbanization process. It can also be used to generate projections of urbanization.

Table 1.2 presents rough estimates of the past and future rural net outmigration rates that are implied by the
1980 United Nations urban and rural population projections for the five Southeast Asian nations included
in Table 1.1 (Ledent and Rogers, 1979). It shows, for example, that during the 1970-75 period rural areas
in Indonesia were losing population at a net annual rate of 3.3 per thousand. Adopting the simplifying
assumption that the urban and rural populations were then both exhibiting an annual rate of natural increase
that was equal to the national growth rate of 26.0 per thousand, and assuming fixed rates of natural increase
and migration over the projection interval, gives (equation 1.16):

pv(2000) = 0.8157(136)e(0.0260−0.0033)25 = 196 million (1.18)

where 0.8157 is the fraction of the national population in 1975 that was rural. Earlier we projected the
corresponding national total to be

P (2000) = 261 million

thus, using equation 1.17, we have that

Pu(2000) = 261− 196 = 65 million

a projection that yields an urbanization level of 25.0%.

Relaxing the assumption of fixed rates by allowing r to follow the nonlinear trajectory assumed in the UN
projections, while keeping m fixed at 3.3 per thousand, gives Indonesia an urbanization level of 24.9% by
the year 2000 (again using equations 1.16 and 1.17 as above). The 1980 UN projection gives 32.3% for this
figure, a consequence of the assumed gradual increase in net rural outmigration to an annual rate of 9.95 per
thousand. To bracket this UN projection, we also show in Table 1.3 the corresponding projection with the
rural net outmigration rate increasing linearly from its 1970-75 value to 16 per thousand by 1990-2000. This
assumption, of course, produces a higher urbanization level than is envisioned in the UN projections-a level
of 39.5% to the UN’s 32.3%. Analogous findings are obtained for the other four Southeast Asian nations.
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TABLE 1.2 Average Annual Rural Net Outmigration Rates (per thousand) Implied by Current
United Nations Estimates and Projections, 1950-2000

Historical Data UN80 Projection
Nation 1950-60 1960-70 1970-75 1975-80 1980-90 1990-2000
Cambodia 0.55 1.12 2.14 2.94 4.52 7.55
Indonesia 2.52 2.95 3.31 4.39 6.42 9.95
Malaysia 6.28 2.38 2.49 4.16 7.09 11.92
Philippines 4.44 3.76 4.32 5.88 8.90 13.55
Thailand 2.30 0.81 0.84 1.83 3.66 7.20
SOURCE: Ledent and Rogers (1979).

TABLE 1.3 Alternative National Urbanization Projections (in percentages) to the Year 2000
and Beyond

Alternative Projections
Historical Data Published Projections Transparent Models *

Nation 1950 1975 UN80 UN76 Constant m Inc. m
Cambodia 10.21 12.64 23.70 40.00 17.19 34.57
Indonesia 12.41 18.43 32.26 31.44 24.92 39.48
Malaysia 20.37 27.88 41.59 45.08 32.22 46.13
Philippines 27.13 34.30 49.04 50.82 41.03 51.65
Thailand 10.47 13.58 23.18 27.36 15.39 34.61

SOURCE: United Nations (1976, 1980) and Rogers (1981)
*Constant m means the 1970-75 value given for the country in Table 1.2; increasing m means a linear increase to m
= 16 by the year 2000. The nonlinear trajectory of r is kept the same as in the United Nations (1980) projections.

1.4 The Demographic Sources of Urban Growth
Do cities grow mostly by the surplus of urban births over urban deaths (urban natural increase) or do they
grow mostly as a consequence of net in migration from rural areas? A recent study by the United Nations
concluded that urban population growth in the less developed nations results primarily from the natural
increase of their urban populations:

Considering only the most recent observation for a country, an average of 60.7 per cent of growth
is attributable to this source, compared with only 39.3 per cent for migration. These figures are
nearly reversed for the more developed countries (40.2 and 59.8 percent) [United Nations, 1980, p.
23].

The United Nations’ decomposition strives to disentangle the immediate contributions of natural increase
and migration to urban population growth by estimating the fraction of today’s growth that would be
eliminated if rates either of natural increase or of migration were suddenly to drop to zero. But this is a
static cross-sectional view, one that ignores the evolution of the changing contributions of migration and of
natural increase to urban growth over time. The long-run impacts of current patterns of natural increase and
migration on urban population growth and urbanization levels can be conveniently assessed by population
projection.

Without a city population there obviously cannot be any urban natural increase; and for some time after
the establishment of a city, when its population is still relatively small in size, the contribution of urban
net inmigration is likely to exceed that of urban natural increase. At the other extreme, when a nation is
mostly urbanized, the outmigration of its rural population can contribute little to urban growth. Between
these two extremes comes a time at which the contribution of natural increase begins to dominate that of net
inmigration.

Imagine a hypothetical population, initially entirely rural, that experiences an annual rate of natural increase
of r and a net rural outmigration rate of m. Recalling equations 1.12 and 1.15-1.17, one may establish that
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the rate of growth of the urban population is the sum of the contribution of urban natural increase and the
contribution of urban net inmigration (Keyfitz, 1980):

ru = 1
Pu(t)

dPu(t)
dt

= d

dt
lnPu(t) = r + m

emt − 1 (1.19)

The first term, r, is the assumed rate of natural increase of the urban population; thus, the second term,
m/(emt − 1), must be its rate of increase through migration. Dividing the second by the firstgives

R(t) = m

r(emt − 1) (1.20)

the ratio of the contribution of migration to natural increase.

At what point does the contribution of natural increase to urban growth first begin to exceed that of urban
net inmigration? The former overtakes the latter immediately after R(t) reaches unity, an event that takes
place when

m

r
= emt − 1 (1.21)

ln
[
m

r
+ 1
]

= mt (1.22)

or

t = 1
m

ln
[
m

r
+ 1
]

(1.23)

Keyfitz (1980) calls t the crossover point and observes that the faster the rate of population growth, the
sooner the crossover, and the larger the rural net outmigration, the sooner will natural increase exceed
migration as the principal contributor to urban population growth.

Denoting the crossover moment by tc, we note that at this point the ratio of the urban to rural population is

S(tc) = Pu(tc)
Pv(tc)

= emtc − 1

= exp
{
m

[
1
m

ln
[
m

r
+ 1
]]}

− 1

= m

r
(1.24)

the fraction of the national population that is urban is

U(tc) = Pu(tc)
Pu(tc) + Pv(tc)

= S(tc)
1 + S(tc)

= m

r +m
(1.25)

and, recalling 1.19, the growth rate of the urban population is

ru = r + m

emtc − 1 = r + m

exp{m(1/m) ln[(m/r) + 1]} − 1 = 2r (1.26)
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The above results can be derived directly. At the crossover point, the contribution of urban net inmigration,
mPv(tc), is equal to that of natural increase, rPu(tc). Therefore,

S(tc) = Pu(tc)
Pv(tc)

= m

r
(1.27)

At this moment the urban rate of natural increase is r and that of urban net inmigration is equal to it; hence
the growth rate of the urban population is 2r.

Imagine again a hypothetical population, initially entirely rural, for which the rate of natural increase is
fixed at 3% per year and the annual rate of net outmigration from rural areas is set at 2%. The ratio of net
inmigration to natural increase in the urban population will be 3.01, 1.36, 0.81, and 0.39, after 10, 20, 30,
and 50 years, respectively. The crossover point is reached

tc = 1
0.02 ln(1 + 0.02/0.03)

= 25.5 years

after the start of the urbanization process, when the urban population is 40% of the total and growing at a
rate of 6% a year.

The urban population of India in 1970 was increasing by about 3.7% a year (Rogers 1978b; Appendix A).
This urban growth rate was the outcome of a 2% rate of natural increase and a net rural outmigration rate of
0.5%. Thus, substituting into equation 1.23, gives

tc = 1
0.005 ln[

[
0.005
0.020 + 1

]
= 44.6 years

India’s urban population in 1970 was just about to start growing more from natural increase than from net
inmigration; the crossover point was reached that year. To see this, we note that India’s observed urbanization
level in 1970 was U = 0.20, which is precisely the level reached at the moment of crossover (equation 1.25):

U(tc) = 0.005
0.020 + 0.005 = 0.20

The natural increase of rural populations exceeds that of urban populations in most parts of the world. Thus,
a greater degree of realism may be obtained by distinguishing these two rates in the above model. Such an
extension appears in Keyfitz (1980).

1.5 Logistic Growth
We have seen, in Section 1.2, that if

d

dt
P (t) = rP (t) (1.28)

then

P (t+ 1) = erP (t) (1.29)
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that is, a constant rate of population growth gives rise to an exponentially increasing population. Introducing
a “ceiling” (a maximum value to ultimate population size, say K) by adding to 1.28 a dampening factor
[1− P (t)/K] that gradually depresses the exponential growth component as the ceiling is approached, gives

d

dt
P (t) = r

K
P (t)[K − P (t)] (1.30)

Equation 1.30 states that population increase is proportional to the total already attained, P (t), and to the
remaining “distance” between that total and the assumed population ceiling, K. Note that the righthand
side of 1.30 is zero when P (t) = K; the population enters a zero growth regime at that point.

Reexpressing 1.30 as (Keyfitz, 1977):

[
1

P (t) + 1
K − P (t)

]
dP (t) = rdt (1.31)

and integrating, yields

ln
[

P (t)
K − P (t)

]
= rt+ c (1.32)

Taking exponentials and then solving for P (t) gives

P (t) = ert+c[K − P (t)] (1.33)

whence

P (t) = Kert+c

1 + ert+c
(1.34)

or, dividing both the numerator and the denominator by ert+c

P (t) = K

1 + e−rt−c
(1.35)

Equation 1.35 defines the curve known as the logistic growth function. It appears in many guises in the
literature; two of its most common alternative forms are

P (t) = K

1 +Be−rt
(1.36)

where B = e−c, or

P (t) = 1
A+ Ce−rt

(1.37)

when the ceiling is assumed to equal unity by setting A = 1/K and C = B/K.

Figure 1.1 illustrates the fit of the logistic curve to a scatter of observations exhibiting the association of
national levels of urbanization with per capita gross national product (GNP) for a number of countries. Note
that the logistic curve of urbanization exhibits a 50% urban national population at a per capita GNP of $500
measured in 1969 U.S. dollars.
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DEGREE OF URBANIZATION COMPARED WITH GNP/CAPITA

Figure 1.1 The Logistic Association between the Degree of Urbanization and Per Capita
GNP for World Bank Member-Countries in 1970

Crude estimates of the parameters of the logistic curve may be obtained by simple linear regression, inasmuch
as equation 1.36 may be expressed as

1
P (t) = 1 +Be−rt

K
= 1
K

+ B

K
e−rt (1.38)

whence

ln
[
K

P (t) − 1
]

= lnB − rt (1.39)

Thus, the input data for regression are a set of paired values for t and ln[K/P (t)− 1].

If estimates for P (t1), P (t2), and P (t3) are available at equidistant times t1, t2, and t3 = (2t2 − t1), with
P (t1) < P (t2) < P (t3), then the population ceiling K is given by (Keyfitz, 1977):

k =

1
P (t1) + 1

P (t3) −
2

P (t2)
1

P (t1)P (t3) −
1

[P (t2)]2
(1.40)
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provided both the numerator and denominator in the above expression forK are positive. In some applications,
for example, projected urbanization paths, K is often set equal to unity.

1.6 The Urban and Rural Population Projections of the United Nations
The United Nations’ method for projecting urban and rural population growth assumes that both the urban
and the rural populations of a country are growing exponentially:

Pu(t+ n) = Pu(t)erun (1.41)

Pv(t+ n) = Pv(t)ervn (1.42)

The ratio of these two populations, denoted by S(t), must then also be growing exponentially:

S(t+ n) = Pu(t+ n)
Pv(t+ n) = Pu(t)erun

Pv(t)ervn
= S(t)e(ru−rv)n = S(t)egn (1.43)

where g = ru − rv is the urban-rural growth rate difference (URGD in United Nations parlance).

Recalling that

U(t) = Pu(t)
Pu(t) + Pv(t)

= S(t)
1 + S(t) (1.44)

we establish through substitution that

U(t+ n) = 1
1 + [1/S(t)]e−gn (1.45)

a form of the logistic function that appears in equation 1.36, with r = g, t = n,K = 1, and B = 1/S(t).
Thus, if the urban-to-rural population ratio is growing exponentially, the urban proportion of the national
population is increasing according to the logistic growth curve.

If the most recently observed value of g were assumed to remain constant, then urban-rural population
projections could be carried out simply by applying equation 1.45 to independently projected national
population totals. However, a constant urban-rural growth rate difference generally produces values of U(t)
that are too high (United Nations, 1980), especially in those countries with high observed values of g and
initial proportions urban.

The overwhelmingly important source of differences between urban and rural population growth rates is net
rural outmigration. As a country urbanizes and empties out its village populations, the pool of potential
migrants to urban areas declines as a fraction of the urban population at the same time that the pool of
potential migrants to rural areas increases as a fraction of the rural population. Consequently, it is reasonable
to expect g to decline as U(t) rises.

Recognizing this evolution, the most recent urban and rural projections issued by the United Nations reflect a
dampening mechanism that ensures a decline in urban-rural growth rate differences as levels of urbanization
increase. Specifically, drawing on cross-sectional data for 110 countries with over 2 million in population,
collected in the 1960 and 1970 rounds of censuses, United Nations demographers estimated the following
simple linear relationship (United Nations, 1980 and 1984):

gh = 0.044− 0.028U(t0) (1.46)

where gh is the “hypothetical” value of the urban-rural growth rate difference and U(t0) is the initial proportion
urban. According to this equation, when a country is 10% urban, the expected value of gh is 0.041; when it is
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90% urban, gh is only 0.019. Inasmuch as few countries have actually experienced these expected values, the
United Nations’ method allows local conditions to be reflected early in the projection period by incorporating
a weighting procedure in which g is gradually forced to converge to gh over time.
TABLE 1.4 Percentage of Population Living in Urban Areas of Major Areas and Regions
1950-2000

1950 1960 1970 1975 1980 1990 2000
World total 28.95 33.89 37.51 39.34 41.31 45.88 51.29
More developed regions 52.54 58.73 64.68 67.49 70.15 74.87 78.75
Less developed regions 16.71 21.85 25.82 28.03 30.53 36.46 43.46
Africa 14.54 18.15 22.85 25.67 28.85 35.70 42.49
Latin America 41.18 49.45 57.37 61.21 64.74 70.70 75.21
Northern America 63.84 67.09 70.45 71.99 73.66 77.20 80.76
East Asia 16.72 24.71 28.61 30.70 33.05 38.63 45.43
South Asia 15.65 17.80 20.45 22.02 23.95 29.10 36.13
Europe 53.70 58.42 63.94 66.45 68.83 73.25 77.11
Oceania 61.24 66.22 70.77 73.35 75.93 80.37 82.97
USSR 39.30 48.80 56.70 60.90 64.77 71.28 76.06
SOURCE: United Nations(1980).

In the United Nations’ method, the projected value of g, denoted by g(t), is defined as the linear weighted
combination of the last observed value g0 and the country’s “hypothetical” value, gh:

g(t) = W1(t)g0 +W2(t)gh (1.47)

with the weights satisfying the constraint W1(t) +W2(t) = 1.
The values assigned to the weights over time are

Time Interval W1(t) W2(t)
1975-1980 0.8 0.2
1980-1985 0.6 0.4
1985-1990 0.4 0.6
1990-1995 0.2 0.8
1995-2000 0 1

� � �
� � �
� � �

2020-2025 0 1
Thus, during the early parts of the projection more weight is given to the last observed value of g; with the
passage of time, the country’s “hypothetical” value gh is given a heavier weighting. Ultimately the projected
g converges to the hypothetical gh, but the crude and arbitrary nature of this weighting procedure can
introduce sudden unexplained shifts in the projected growth rate.
The national urbanization projections set out earlier in Table 1.3 were produced by this United Nations
method. Table 1.4 presents the associated global and regional projections, which were obtained by aggregating
the appropriate country totals.
This chapter has introduced a number of fundamental concepts in subnational population projection: rate of
increase, exponential growth, logistic growth, and the ratio of the contributions of migration and of natural
increase to subnational population growth. A more advanced exposition of these same concepts can be found,
for example, in the works of such mathematical demographers as Keyfitz (1977, 1980). We now shall consider
some of these same concepts in the context of a spatial system of several interacting subpopulations.
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2 SPATIAL POPULATION DYNAMICS: LOCATION WITH-
OUT AGE

Changes in the size and composition of a human population residing in a territorial unit with fixed boundaries
are determined by the interaction of births and deaths to residents and the migration across those boundaries
of both residents and nonresidents. When boundaries change over time, as they do with populations classified
as urban and rural, territorial reclassification also becomes a contributor to change. Here we shall follow
the standard practice of international agencies, such as the United Nations, and include the effects of
reclassification together with those of internal migration, distinguishing them from natural increase, which
will also be assumed (as in standard UN practice) to include the effects of international migration.

To introduce the spatial dimension into the analysis, we disaggregate the national population into regional
subpopulation and replace net migration rates with origin-destination-specific gross migration rates. The net
rates express differences between arrivals and departures as a fraction of the single population experiencing
both; the gross rates, on the other hand, express the total number departing from one subpopulation and
arriving at another as a fraction of the origin subpopulation. This revised perspective brings with it a
fundamental reorientation in subnational population analysis. It introduces a view of all regional populations
as mutually interacting components of a multiregional spatial system. Instead of addressing the evolution of
each regional population one at a time, the multiregional perspective examines the evolution of all regional
populations at the same time. This reformulation leads to several advantages in the quantitative study of
migration patterns and the ways in which they affect spatial population dynamics.

Net migration rates are imperfect indices of movement propensities because they also reflect the sizes of the
populations from which they derive. For example, if the gross rates of migration between urban and rural
areas of a nation are held constant, the corresponding urban net migration rate will change over time with
shifts in the relative population totals in the two areas. Accordingly, one’s inferences about changes in net
migration patterns over time will confound the impacts of migration propensities with those of changing
population stocks.

Subnational population projection models that adopt net migration rates cannot keep track of population
subgroups that are distinguished by places of birth or by previous regions of residence. Such disaggregations
are possible only with models that use gross migration rates. Additional disaggregations to reduce other
forms of heterogeneity among migrants may further illuminate the evolution of particular spatial population
distributions. For example, if the experience of an event, such as migration, produces a “learning” effect that
raises the chances for experiencing another, or if the continued nonexperience of the event produces a form
of “cumulative inertia” that lowers the probability of migration, then a disaggregation that reflects some of
these effects may be desirable. Only a model based on gross migration flows is capable of incorporating such
disaggregations.

In short, a focus on gross instead of net migration flows more clearly identifies the patterns, illuminates
the dynamics, and enhances the understanding of demographic processes that occur in multiple interacting
populations. Distinguishing between flows and changes in stocks reveals patterns that otherwise may be
obscured; focusing on flows into and out of a regional population exposes dynamics that otherwise may
be hidden; and linking explanatory hypotheses to appropriately disaggregated gross flows permits a more
accurately specified projection model. To introduce the multiregional perspective, we begin with the simplest
possible model–one with only two subnational aggregate populations: urban and rural.

2.1 Urbanization in the Soviet Union
The urban population of the Soviet Union was increasing by about 2.5% a year in 1970 (Rogers, 1978a). The
urban growth rate, ru, was the outcome of a birth rate, bu, of 17 per 1000; a death rate, du, of 8 per 1000; an
inmigration rate, iu, of 27 per 1000; and an outmigration rate, ou of 11 per 1000. Expressing these rates on a
per capita basis leads to the fundamental identity
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ru = bu − du + iu − ou (2.1)
= 0.017− 0.008 + 0.027− 0.011
= 0.025

The corresponding identity for the rural population was

rv = bv − dv + iv − ov (2.2)
= 0.019− 0.009 + 0.014− 0.035
= −0.011

The total national population of the USSR in 1970 was about 242 million, of which roughly 136 million (56%)
was classified as urban. Multiplying this latter total by the urban growth rate gives

136(0.025) = 3.40 million

as the projected increase for 1971. An analogous calculation for the rural population yields

106(-0.011) = -1.17 million

for the corresponding projected decrease in the rural population. These changes imply, for 1971, an urban
population of 139 million, a rural population of 105 million, and a rate of national population increase of

136(0.025) + 106(−0.011)
242 = 0.56(0.025) + 0.44(−0.011) = 0.009

that is,
r = 0.56ru + 0.44rv = 0.009

where 0.56 is the fraction urban and 0.44 is the fraction rural.

A uniregional perspective of urban growth in the Soviet Union would describe the dynamics of urbanization
by focusing on the natural increase and net migration components of the 0.025 rate of urban growth; that is,
0.009 and 0.016, respectively. On the assumption that these rates remain fixed, a ten-year projection gives a
1980 urban population of

Pu(1980) = (1.025)10136 = 174.09 million
Subtracting this quantity from the corresponding projected national total of

P (1980) = (1.009)10242 = 264.68 million

gives , as a residual, a projected rural population of

Pv(1980) = 264.68− 174.09 = 90.59 million

Reversing the order and projecting the rural population first gives

Pv(1980) = (0.989)10106 = 94.90 million

and, as a residual, a projected urban population of

Pu(1980) = 264.68− 94.90 = 169.78 million

Finally, an alternative uniregional formulation is one that projects the national total as the sum of the urban
and rural projections. In this perspective, the projected national total is

174.09 + 94.9 = 268.99 million
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A uniregional projection that relies on the notion of a net migration rate can ultimately produce a fundamental
inconsistency. For example, fixed rates of rural outmigtation eventually will empty out the rural areas, but
net inmigration to the urban areas will continue unabated in the uniregional model. A logical escape from
this built-in inconsistency of the uniregional perspective is the adoption of a biregional model in which rates
of migration reflect the populations that are exposed to the possibility of migrating. The urban rate of
natural increase is the same as before, but the urban net migration rate mu of 0.016 is not decomposed into
its in-and outmigration components:

mu = iu − ou = 0.027− 0.011 = 0.016 (2.3)

The flow of inmigrants into urban areas is equal to ovPv, the flow out of rural areas. Dividing this quantity
by the urban population gives the urban inmigration rate iu, which is calculable as the product of a rural
outmigration rate of ov of 0.035 and the ratio of rural to urban population Pv/Pu of 0.78. Thus

mu = ov

(
Pv
Pu

)
− ou = 0.035(0.78)− 0.011 = 0.016 (2.4)

and urban population growth may be described by an accounting equation that involves both the receivig
and sending populations:

Pu(t+ 1) = (1 + bu − du − ou)Pu(t) + ovPv(t) (2.5)

Equation 2.5 states that next year’s projected urban population total is calculated by adding to this year’s
urban population (1) the increment due to urban natural increase, (2) the decrement due to the outmigration
to rural areas, and (3) the increment due to the inmigration from rural areas. Substituting in the rates for
the Soviet Union gives the accounting identity

Pu(1971) = (1 + 0.017− 0.008− 0.011)Pu(1970) + 0.035Pv(1970) (2.6)
= 0.998(136) + 0.035(106)
= 139.44 million

An analogous equation for the rural population yields

Pv(1971) = 0.011Pu(1970) + (1 + 0.019− 0.009− 0.035)Pv(1970) (2.7)
= 0.011(136) + 0.975(106)
= 104.85 million

Assuming, once again, that the various rates remain unchanged over a ten-year period gives

Pu(1980) = 168.53 million

Pv(1980) = 97.21 million

and
P (1980) = 168.53 + 97.21 = 265.74 million

Apart from rounding errors, the biregional model generates the same 1971 projection as do the uniregional
models; however, its ten-year projection differs from all three uniregional projections. Moreover, its long-run
projection does not locate the entire national population into urban areas. Its stable distribution accords
rural areas about a fourth (0.243) of the total stable national population.

The differences between the uniregional and biregional projections are due to bias, and the principal cause
of this bias may be shown to be a consequence of treating migration as a net flow. To see this more
clearly, consider how the migration specification is altered when the bioregional model is transformed into a
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uniregional model. The accounting relationship in equation 2.5, which involved both the urban and the rural
populations, now is replaced by an expression that involves only the former:

Pu(t+ 1) = (1 + bu − du − ou)Pu(t) +
[
ov
Pv(t)
Pu(t)

]
Pu(t) (2.8)

= (1 + bu − du − ou + iu)Pu(t)
= (1 + bu − du +mu)Pu(t) = (1 + ru)Pu(t)

where
mu = iu − ou = uran net inmigration rate (2.9)

iu = ov
Pv(t)
Pu(t) = ov

[
1− (U(t)
U(t)

]
(2.10)

and U(t) is the fraction of the total national population that is urban at time t. In the ten-year projection,
all annual rates are assumed to be fixed. But iu, and therefore also mu, depend on U(t), which varies during
the ten years and creates a bias.

Bias and inconsistency may result from viewing biregional (and, by extension, multiregional) population
systems through a uniregional perspective. Expressing migration’s contribution to regional population growth
solely in terms of the population in the region of destination can lead to over- or underprojection and
introduce inconsistencies in long-run projections. These problems of bias and inconsistency become even
more important when age composition is taken into account, as we shall see in Chapter 4.

2.2 Disaggregated Projections
The discussion until now has revolved around uniregional versus biregional models as alternative means
for accomplishing the same end: a projection of a nation’s urban and rural populations. We now turn
to a consideration of ends that can be achieved only with the use of biregional and multiregional models:
projections disaggregated by residence-duration status, for example. Because uniregional models do not focus
on gross migration flows, they cannot follow the migration paths of particular population groups over time.
Biregional and multiregional models, on the other hand, can identify the life histories of such groups, and
this gives them a decisive advantage over uniregional models.

Projections disaggregated by residence-duration status have both a retrospective and a prospective aspect.
For example, recalling our earlier projections of the urban and rural populations of the Soviet Union, we
may wish to identify how many of the projected urban residents were living in rural areas at the start of
the projection period (i.e., in 1970). Or we may be interested in determining what fraction of the projected
urban dwellers were born in rural areas (i.e., are “alien” residents) and what proportion are urban “natives.”

Prospectively, we may ask, for example, what proportion of the 1970 Soviet rural population will be living in
urban areas in the year 2000. To answer this question, we begin by dividing the resident urban population
into natives and aliens:

residents = natives + aliens
Pu(t) = uPu(t) + vPu(t) (2.11)

where the additional subscript on the left of the population variable denotes the region of birth (the right
subscript denotes the region of residence, as before).

The accounting relationship for projecting urban populations was given earlier as equation 2.5. The same
equation may be used for projecting the urban native population simply by introducing the place of birth
subscript and adding the new births of urban residents during the year to the native population:

uPu(t+ 1) = (1 + bu − du − ou) uPu(t) + bu vPu(t) + ov uPv(t) (2.12)
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Analogous relationships may be defined for vPu(t), uPv(t), and vPv(t). It is assumed that natives and
aliens experience the same fertility, mortality, and migration rates-namely, those prevailing at their region of
residence. Because all births to alien migrants are added to the native population stock, the equations for
vPu(t) and uPv(t) contain no birth rates. For example,

vPu(t+ 1) = (1− du − ou) vPu(t) + ov vPv(t) (2.13)

For illustrative purposes, assume that a half of the Soviet Union’s 1970 urban population was born in rural
areas and that one-tenth of its rural population was born in urban areas. Then

uPu(1971) = 0.998(68) + 0.017(68) + 0.035(10.6) = 69.4 million
vPu(1971) = 0.981(68) + 0.035(95.4) = 70.0 million
uPv(1971) = 0.011(68) + 0.956(10.6) = 10.9 million
vPv(1971) = 0.011(68) + 0.019(10.6) + 0.975(95.4) = 94.0 million

Recalling the “row-times-column” rule of matrix multiplication, we re-express the above four equations in
matrix form: 

uPu(1971)
vPu(1971)
uPv(1971)
vPv(1971)

 =


0.998 0.017 0.035 0

0 0.981 0 0.035
0.011 0 0.956 0

0 0.011 0.019 0.975




68
68

10.6
95.4


Continuing this projection forward for another 29 years yields

uPu(2000) = 123.6 uru(2000) = 0.018
vPu(2000) = 103.0 vru(2000) = 0.006
uPv(2000) = 21.1 urv(2000) = 0.021
vPv(2000) = 72.3 vrv(2000) = −0.004
uU (2000) = 0.39 vU (2000) = 0.32

where

U(2000) = uU(2000) + vU(2000)

and

uU(2000) = 123.6
123.6 + 103.0 + 21.1 + 72.3 = 0.39

The same result may be obtained in a single matrix multiplication if the matrix of growth rates is first raised
to the thirtieth power, as is demonstrated in Figure 2.1A. The growth matrix of that multiplication may be
aggregated to produce urban-rural projections without reference to place of birth (Figure 2.lB). An analogous
matrix, with the contribution of fertility deleted (Figure 2.lC), gives, for example, the proportion of the initial
rural population that one may expect to find in urban areas in the year 2000 (i.e., 47.50/106 = 0.45).

A number of interesting conclusions may be drawn at this point. First, on 1970 rates, roughly one-fifth of
the urban population in the year 2000 will consist of people who lived in rural areas in 1970; and, given our
earlier assumptions regarding place of birth, 45% of the urban population will be made up of rural born.
Second, although the national population will be growing at an annual rate of just under 1%, the growth rate
of aliens in the rural areas and of natives in the urban regions will be about twice as high. Finally, as is to be
expected in a national population experiencing high levels of rural to urban migration, the only declining
rate of growth is exhibited by the rural native population.
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
123.63
102.95
21.06
72.31

 =


1.0570 0.4145 0.6256 0.1775
0.0168 0.6593 0.1342 0.5823
0.1885 0.0476 0.3374 0.0150
0.0503 0.1912 0.2370 0.5594




68
68

10.6
95.4


2.1A. Projection of the urban and rural populations to the year 2000, disaggregated by place of
birth. [

226.58
93.37

]
=
[
1.0738 0.7598
0.2388 0.5745

] [
136
106

]
2.1B. Projection of the urban and rural populations to the year 2000.[

47.50
34.21

]
=
[
0.6425 0.4481
0.1408 0.3227

] [
0

106

]
2.1C. Survivors of the 1970 rural population in the year 2000.

Figure 2.1 Alternative Projections of the 1970 Urban and Rural Populations of the Soviet
Union to the Year 2000

2.3 The Sources of Urban Growth Revisited
Imagine a hypothetical population, initially entirely rural, that is subjected to the regime of growth exhibited
by India in 1970 (Appendix A). Table 2.1A.1 shows that after 30 years the urban population is 15.5% of the
national total and growing at 4.7% per annum. The rate of urban net inmigration at that moment is 2.7%,
and its contribution as a source of urban growth is (2.7/4.7) 100 = 58.1%. Twenty years later the urban
fraction increases to 22.0% and migration’s contribution falls to 41.9%. The crossover point is passed after 39
years, when the urban fraction is 18.7%. Note that this hypothetical population, starting its evolution as an
entirely rural population, ultimately stabilizes. This is simply a consequence of what is known in demography
as strong ergodicity, the tendency of an observed population to “forget its past” eventually as it is projected
for a long period into the future under fixed rates of natural increase and migration. Such “horizon-year”
projections allow one to contrast two regimes of growth without confounding their impacts with different
starting conditions, such as India’s initial 20% urban to the Soviet Union’s 56% in 1970.

Table 2.1 suggests that India’s urban population in 1970 was growing more due to natural increase than
to net migration because it passed its crossover point when it was 18.7% urban some time ago. (Compare
this result with the corresponding uniregional finding set out at the end of Chapter l. Why the difference?)
The urban population in the Soviet Union in 1970, on the other hand, was growing more as a result of net
migration than of natural increase because it still was about 9-10 years short (on 1970 rates) of reaching the
63.2% urban level associated with its crossover point.

The crossover point for the population with the Soviet Union’s growth regime occurs at about the same time
as with India’s–that is, after 39.5 years–but it is experienced by a national population that is much more
urban. Tables 2.1A.2 and 2.1B.2 show why. Lowering rates of natural increase delays the crossover point but
raising net rates of urban inmigration hastens its occurrence. Combining India’s natural increase with the
Soviet Union’s higher rates of rural to urban migration reduces the time to the crossover from 39 to 27 years.
Replacing these migration rates with India’s in the Soviet Union’s growth regime delays the crossover by over
20 years.

Table 2.1 indicates that the principal effect of migration is to determine the level of urbanization, whereas
that of natural increase is to establish the urban growth rate. Despite differences in migration rates, India’s
natural increase rate ultimately produces an urban population growing at 2% per year; the Soviet Union’s
gives rise to urban growth at roughly half that rate. Despite differences in rates of natural increase, the
Soviet Union’s migration rates generate a national population that ultimately is three-fourths urban, whereas
those of India produce an urban fraction that ultimately is just under 40%.
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That increasing rural to urban migration should speed up the time to crossover is perhaps intuitively
understandable; that it should also reduce the urban population growth rate, however, is not. Yet Table 2.1
suggests this conclusion. For example, introducing the Soviet Union’s migration rates into India’s growth
regime results in a lower rate of urban population growth. A similar reduction occurs when the urban growth
effects of the growth regime in Table 2.1B.2 are contrasted with those of Table 2.1B.1. What is the cause of
this counterintuitive pattern of evolution?

The fixed-rate projection model used to generate the results set out in Table 2.1 defines the urban population
growth rate ru(t) to be the sum of a fixed rate of natural increase, bu − du, and a changing rate of urban
net inmigration, mu(t). Given that urban net inmigration reflects the difference between rural and urban
outmigration flows, for a national population that is 100U(t)% urban, we have that

mu(t)U(t) = ov[1− U(t)]− ouU(t) (2.14)

whence, as in 2.9 and 2.10

mu(t) = ov

[
1− U(t)
U(t)

]
− ou (2.15)

with mu(t) > 0 if [1− U(t)]/U(t) > ou/ov

Because ov and ou are fixed by assumption, if U(t) increases with t, then mu(t) must decrease over time.
Hence ru(t) must decrease also, and so must the fraction of urban growth due to migration (recall that the
rate of natural increase is fixed). And because, in our illustrations, increasing ov increases the urban fraction
more than proportionately, mu(t) and ru(t) must take on lower values than before.

A projection model that guarantees an ultimately declining fraction of urban growth due to migration is of
limited value for answering the question of whether natural increase or net migration is the principal source
of urban population growth. It appears that a more realistic model is needed, one that allows the urban
natural increase rate to change over time along with the rate of urban net inmigration. The simplest way to
introduce such realism is to disaggregate the population by age, as we shall do in Chapters 3 and 4.

2.4 The Matrix Projection Model and Stable Growth
Matrix algebra provides a compact and useful means for studying the demographic evolution of multiple
interacting populations (Rogers, 1968). Matrix notation makes the projection process more transparent, and
matrix theory brings to demographic analysis results that have direct application to population questions.
Expressing the population projection process in matrix form also leads to the derivation of results that would
be virtually impossible to establish otherwise.

The reader should confirm that the simple biregional projection of the Soviet Union’s urban and rural
populations described in equations 2.6 and 2.7, respectively, may be expressed in matrix form as

[
139
105

]
=
[
0.998 0.035
0.011 0.975

] [
136
106

]
or, more generally, as [

Pu(t+ 1)
Pv(t+ 1)

]
=
[
guu gvu
guv gvv

] [
Pu(t)
Pv(t)

]
(2.16)

or
P(t+ 1) = GP(t) (2.17)
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Recalling 2.6 and 2.7, it is evident that

guu = 1 + bu − du − ou
gvu = ov

gvv = 1 + bv − dv − ov (2.18)
guv = ou

If these rates are fixed over time, then

P(t+ n) = GP(t+ n− 1) = G2P(t+ n− 2) = . . . = GnP(t) (2.19)

The Soviet Union example set out in Figure 2.1 illustrates such a projection for n = 30 years. The urbanization
level is projected to increase from its initial

U(1970) = 136
136 + 106 = 0.56

to
U(2000) = 226.6

226.6 + 93.4 = 0.71

at which time the urban growth rate should stand at 1.2% per year, about half the rate that was exhibited in
1970.

The results in Table 2.1 indicate that the Soviet Union’s urbanization level is expected to grow until it
stabilizes at 75% of the total national population. At that point, the population may be said to be experiencing
stable growth–a condition characterized by an unchanging “intrinsic” rate of growth (0.09% per year in this
example) and a fixed distribution of the population across regions (75% and 25% in this example).

A more transparent picture of the evolution to stable growth may be obtained by focusing on a simplified
hypothetical growth process, one that is unencumbered by the clutter of observed data. Imagine an urban
population of 24 million that each year sends a fourth of its population to rural areas and receives, in exchange,
one-half of the rural population, which initially is also taken to stand at 24 million persons. Assume that
a zero-population growth regime prevails, such that the annual increment due to births, in each region, is
exactly offset by the annual decrement due to deaths. Then we have that

G =
[
3/4 1/2
1/4 1/2

]

P(t) =
[
24
24

]
and the projection process defined by 2.17 is

[
30
18

]
=

[
3/4 1/2
1/4 1/2

] [
24
24

]
[
31 1/2
16 1/2

]
=

[
3/4 1/2
1/4 1/2

] [
30
18

]
=

[
11/16 5/8
5/16 3/8

] [
24
24

]
[
31 7/8
16 1/8

]
=

[
3/4 1/2
1/4 1/2

] [
31 1/2
16 1/2

]
=

[
43/64 21/32
21/64 11/32

] [
24
24

]
...

...
...[

32
16

]
=

[
3/4 1/2
1/4 1/2

] [
32
16

]
=

[
2/3 2/3
1/3 1/3

] [
24
24

]
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Note that once the initial urbanization level of 1/2 grows to 2/3, it remains at that level forever. The
population has achieved stable growth: Each of its subgroups is increasing exponentially and at the same rate.
Its urban and rural growth rates both are zero, and its stable distribution is forever fixed in the proportions
2/3 and 1/3. These two fundamental attributes of the process of projection to stability are augmented by a
third: The independence of the stable growth results from the starting population distribution–a property of
the process called “ergodicity.”

That the stable or intrinsic growth rate and corresponding stable distribution are independent of the starting
population distribution and depend only on the growth regime defined by the projection matrix, G may be
illustrated by applying the same matrix to a different initial population distribution. For example, the reader
should confirm that

[
34
14

]
=
[
3/4 1/2
1/4 1/2

] [
40
8

]
converges to the same stable state as was obtained before, and that the projection matrix[

5/6 1/4
1/4 5/6

]
ultimately brings about a level of urbanization with half of the national population living in rural areas and
growing at 25/3 = 8.3% per annum.

2.5 Population Redistribution in Belgium
In its new 1970 constitution, Belgium was officially divided into three principal regions: Brussels, Flanders,
and Wallonia. Table 2.2 sets out data on population stocks, births, deaths, and migration for this three-region
system, and Table 2.3 transforms these data into rates. Expanding the matrix model defined in equation
2.17, we obtain the following projection of the end-of-year population in 1970:

1, 073, 998
5, 413, 782
3, 157, 399

 =

0.969497 0.002615 0.004221
0.017749 1.000175 0.002383
0.012907 0.001435 0.993583

1, 079, 520
5, 386, 158
3, 155, 988



TABLE 2.2 Components of Population Change in a Three-Region System: Belgium, 1970

International
Internal Migration Natural Change Migration Population

Region to Brussels Flanders Wallonia Total Births Deaths In Out 31 Dec ’69 1 July ’70 31 Dec ’70
from (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Brussels 0 19,160 13,934 33,094 14,694 14,529 19,086 17,947 1,079,520 1,077,328 1,075,136
Flanders 14,085 0 7,728 21,813 82,586 59,832 20,189 17,387 5,386,158 5,401,370 5,416,583
Wallonia 13,321 7,522 0 20,843 44,888 44,299 22,866 21,037 3,155,988 3,157,606 3,159,225

Total 27,406 26,682 21,662 75,750 142,168 118,660 62,141 56,371 9,621,666 9,636,304 9,650,944

SOURCE: Willekens (1979).
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TABLE 2.3 Rates of Population Change in a Three-Region System: Belgium, 1970

Internal Migration Natural Change International Migration
Region to Brussels Flanders Wallonia Total Births Deaths In Out
from
Brussels 0 0.017749 0.012907 0.030656 0.013612 0.013459 0.017680 0.016625
Flanders 0.002615 0 0.001435 0.004050 0.015333 0.011108 0.003748 0.003228
Wallonia 0.004221 0.002383 0 0.006604 0.014223 0.014036 0.007245 0.006666

SOURCE: Willekens (1979)

Differences between the projected and the observed end-of-year populations may be attributed to inaccurate
reporting of event and flow data and to the omission of the effects of international migration. International
migration may be introduced into the model by adding the effects of net immigration in the diagonal of
the projection matrix. This would result in revised diagonal values of 0.970552, l.000695, and 0.994162,
respectively. For simplicity, however, we shall ignore the impacts of such international migration.

Raising the projection matrix to successively higher powers, we find that at stability the Belgian population
would be increasing at an annual compounded rate of 0.3% a year. Its stable distribution at that point would
allocate 8.2% of the national population to the Brussels region, 69.9% to Flanders, and 21.9% to Wallonia
(Willekens and Philipov, 1981). To confirm these results, we observe that the following equality is satisfied:

 8, 237
70, 107
21, 957

 =

0.969497 0.002615 0.004221
0.017749 1.000175 0.002383
0.012907 0.001435 0.993583

 8, 212
69, 897
21, 891

 = (1.00301)

 8, 212
69, 897
21, 891


A population of 100,000 people, allocated among the three regions according to the stable distribution, would
increase by 0.3% in each region every year.

A comparison of the stable regional allocation of the national population to the one observed in 1970 shows
Flanders gaining in relative population size. The reader may wish to examine the sources of this population
growth and to identify the relative contribution made to it by internal migration.

The division of a national population into subnational regional populations is but one of many alternative
disaggregations frequently adopted in formal population analyses and projections. Probably the most common
is a division of the population into age groups. We take up this topic in the next chapter.
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3 UNIREGIONAL POPULATION DYNAMICS: AGE WITH-
OUT LOCATION

Inventories and projections of human populations are an important component of most socioeconomic planning
efforts. Populations are the clients whose welfare the planning is supposed to improve; they also are a primary
resource used in the production of goods and services that lead to higher levels of welfare; and they consume
resources that might be more profitably used elsewhere.

But welfare levels, participation patterns in production, and consumption behavior all vary with age. For
example, demands for goods and services often increase or decline in rough proportion to the pattern of
population change in certain age groups. The need for elementary schools and elementary school teachers
falls with declines in the number of children, as does the market for baby food. Demand for police protection
and prisons increases with the growth of young adults in the ages of peak criminal activity, and health care
requirements and the job market for nurses grow with a rise in the number of persons in the pensionable age
groups.

A disaggregation by age, then, is introduced into subnational population projections because forecasts of
these population subgroups are important in their own right. But disaggregation also may be advocated
because demographic rates are more stable and more meaningful when they refer to relatively homogeneous
groups. For example, schedules of age-specific mortality rates normally show a moderately high death rate
immediately after birth, followed by a drop to a minimum between ages 10 to 15, then a slow and gradual
increase until about age 50, and thereafter a rise at an increasing pace until the last years of life. Fertility
rates generally start to assume positive values at age 15, rise to attain a maximum somewhere between ages
20 and 30, and decline to zero once again at an age close to 50. Rates of migration start out with moderately
high values for infants, drop to a low point at about age 16, turn sharply upward to a peak near ages 20 to
22, and then decline regularly thereafter until the onset of the principal ages of retirement, at which point a
slight hump or an upwardly sloping curve may be evidenced.

In introducing age to the subnational population projection, we begin with the simplest case–a population
exposed to fixed birth and death rates and zero migration.

3.1 The Uniregional Projection Model
Imagine a regional population, undisturbed by migration, that has been disaggregated into five-year age
groups and whose evolution is to be projected forward over a unit time interval of five years. If the number
of individuals aged x to x+ 4 at last birthday is denoted by P (x), then the number five years later will be
s(x)P (x), where s(x) is the fraction surviving from one age group to the next. Normally s(x) comes from a
life table that describes the mortality pattern of the population being projected.

The calculation of the survivors of an initial population distribution at time t, set out as the vector P(t), may
be conveniently expressed in matrix form as SP(t), where all elements of the matrix S are zero except those
along the subdiagonal. Thus, we have that

P(t+ 1) = SP(t)
P(t+ 2) = SP(t+ 1)
...
P(t+ n) = SP(t+ n− 1)

 (3.1)

or
P(t+ n) = SnP(t) (3.2)
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where

P(t) =

P (0; t)
P (5; t)

...

 and S =


0 0 0 . . .
s(0) 0 0 . . .

0 s(5) 0
... . . . . . .

 (3.3)

such that the jth element of the ith row is sij(x) for j = i− 1 = 1, 2, 3, ... and 0, otherwise.

Repeated multiplication of P(t) by S will ultimately produce a vector of zeros because additions due to births
are not included. To incorporate the impact of fertility, we let b(x) denote the average number of babies born
during the unit age-time interval and alive at the end of that interval, per person aged x to x + 4 at last
birthday at the start of the interval. That age group’s contribution to the first age group, then, is b(x)P (x; t),
and summing over all ages of childbearing (here taken to be from ages α to β), gives

P (0; t+ 1) =
β−5∑

x=α−5
b(x)P (x; t) (3.4)

Defining a matrix β that has zeros everywhere except in the first row allows us to express the population
projection model as

P(t+ 1) = (S +B)P(t) (3.5)

or, more simply,
P(t+ 1) = GP(t) (3.6)

where

G =


0 0 b(10) b(15) · · ·
s(0) 0 0 . . .

0 s(5) 0
... . . . . . .

 (3.7)

Note that equation 3.6 has the same matrix expression as equation 2.15. Only the contents of the matrix and
the vectors have been altered.

The projection in 3.6 could be carried out first for females and then for males, using for each the appropriate
life table and age-specific rates of motherhood and fatherhood. However, dealing with the two sexes separately
can introduce discrepancies in long-term projections, and demographers therefore prefer to attribute the
births of both boys and girls to the mother-in what is called the female dominant model. A projection
matrix that incorporates both sexes may be readily constructed on such a model, with equation 3.6 now
incorporating a much larger matrix G and longer vector P(t). Supposing that the upper left quarter of G
projects females and the lower two quarters males, we have

[
Pf (t+ 1)
Pm(t+ 1)

]
=
[
Sf +Bf 0
kBm Sm

] [
Pf (t)
Pm(t)

]
(3.8)

where k is the product of (l) the ratio of male to female births, and (2) the ratio of male to female stationary
life table populations in the first age group. Note that the births of baby girls and baby boys, generated
by the fertility elements of Bf and Bm in the multiplication process, are solely a function of the female
population Pf (t).

Once the population projection process has been expressed in matrix form, we can draw on the theory of
matrices with nonnegative elements to study its properties (Rogers, 1975). This theory informs us that,
except for a set of odd fertility patterns that are not observed in human populations, repeated powering of
the matrix G ultimately will produce a matrix with only positive elements. And eventually each element of
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the matrix with the higher power will be proportional to the corresponding element of the matrix with the
lower power; that is,

Gh+1 .= λGh (3.9)

as was the case in Chapter 2. Once again λ may be interpreted as the growth ratio, in this case per five-year
period, and the stable intrinsic annual rate of growth is given by 0.2 lnλ, since λ = e5r.

Consider the following simple numerical example. Imagine a population disaggregated into four age groups:
0-14, 15-29, 30-44, and 45 years and over. Suppose that 216 thousand individuals are to be found in each age
group and that the fractions surviving, s(x), are all equal to 5/6. Assume that the fertility elements, b(x),
are 0, 3/4, 5/6, and 1/4, respectively. Then the projection defined in 3.5 yields


396
180
180
180

 =


0 3/4 5/6 1/4

5/6 0 0 0
0 5/6 0 0
0 0 5/6 0




216
216
216
216


because

396 = 0(216) + 3/4(216) + 5/6(216) + 1/4(216)

and
180 = 5/6(216)

for the remaining three age groups.

Note that a more realistic projection would replace the zero in the lower right corner of the growth matrix
by some positive value in order to allow a fraction of those 45 and over to survive the unit time interval
and to remain once again in the same 45-and-over age group. In most empirical projections, however, the
open-ended last age group is at east 85 years and over and the matter is usually resolved by inflating the
next-to-last age group’s fraction surviving in order to account for individuals that remain in the last age
group, that is, s(80) is inflated and therefore may exceed unity.

The reader should confirm that the above matrix projection process ultimately stabilizes and exhibits both
an unchanging growth ratio of λ = 1.1209 and a fixed age composition of (0.3694; 0.2746; 0.2042; 0.1518).

3.2 The Life Table
Vital statistics and censuses provide the necessary data for the calculation of age-specific birth and death
rates, which may be used to answer questions such as: What is the current rate at which 40-year-old males
are dying from heart disease or at which 30-year-old women are bearing their second child? But many of the
more interesting questions regarding mortality and fertility patterns are phrased in terms of probabilities; for
example: What is the current probability that a man aged 40 will outlive his 38-year-old wife, or that she
will bear a third child before her forty-fifth birthday?

Demographers normally estimate probabilities from observed rates by developing a life table. Such tables
describe the evolution of a hypothetical cohort of babies born at a given moment and exposed to an unchanging
age-specific schedule of rates. For this cohort of babies, they exhibit a number of probabilities for changes of
state, such as dying, and develop the corresponding expectations of life spent in different states at various
ages. Life tables that deal with age intervals of a year are commonly referred to as complete life tables,
whereas those using longer age intervals are called abridged life tables. However, we shall ignore this somewhat
spurious distinction and for expositional convenience will focus only on age intervals five years wide.

The simplest life tables recognize only one category of decrement, death, and their construction is normally
initiated by estimating a set of age-specific probabilities of dying within each interval of age, q(x) say, from
observed data on age-specific death rates, M(x) say. The conventional calculation assumes that deaths are
uniformly distributed over time and over the ages within the age interval. If D(x) denotes the number of
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deaths registered during a calendar year among people aged x to x+ 4 at last birthday, we may assert that
people in that age interval died at the rate of D(x) in each of the 5 years and that (5/2) D(x) represents the
number of people who were alive at the beginning of the unit interval and who died by the time it was half
over. Thus, if P (x) denotes the population at the mid-point of the interval, then 5D(x) is the number of
deaths over the 5-year period, P (x) + 5/2D(x) is the population exposed on average to the possibility of
dying, and

q(x) = 5D(x)
P (x) + 5/2D(x) (3.10)

Dividing both the numerator and denominator by P (x), we have that

q(x) = 5M(x)
1 + 5/2M(x) (3.11)

or, alternatively,
p(x) = 1− q(x) = [1 + 5/2M(x)]−1[1− 5/2M(x)] (3.12)

where M(x) = D(x)/P (x), and p(x) is the age-specific probability of surviving from exact age x to exact age
x+ 5.

The annual death rate among 40 to 44-year-olds in India in 1970 has been estimated to be 0.006797 (Appendix
A). Thus, the associated probability of dying between exact age 40 and exact age 45 is

q(40) = 5(0.006797)
1 + 5/2(0.006797) = 0.033418

and the corresponding probability of surviving is

p(40) = l − q(40) = 0.966582

These values may be found in Columns 2 and 3 of Table 3.1, which presents a life table for India’s total (male
plus female) population in 1970. Notice that the corresponding death rate appears in Column 7. This is
because the above method of calculating q(x) implies an equality between the observed population’s death
rate, M(x), and its life table population’s counterpart, m(x).

TABLE 3.1 Uniregional Life Table: India, 1970

Age, x p(x) q(x) `(x) d(x) L(x) m(x) s(x) T(x) e(x)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 0.761213 0.238787 100,000 23,879 440,303 0.054232 0.852517 4,885,568 48.86
5 0.972463 0.027537 76,121 2,096 375,366 0.005584 0.980073 4,445,265 58.40

10 0.987898 0.012102 74,025 896 367,886 0.002435 0.987558 4,069,899 54.98
15 0.987213 0.012787 73,129 935 363,309 0.002574 0.984007 3,702,013 50.62
20 0.980761 0.019239 72,194 1,389 357,498 0.003885 0.980883 3,338,704 46.25
25 0.981007 0.018993 70,805 1,345 350,664 0.003835 0.979759 2,981,206 42.10
30 0.978487 0.021513 69,460 1,494 343,566 0.004349 0.976260 2,630,542 37.87
35 0.973983 0.026017 67,966 1,768 335,410 0.005272 0.970332 2,286,976 33.65
40 0.966582 0.033418 66,198 2,212 325,459 0.006797 0.960005 1,951,566 29.48
45 0.953202 0.046798 63,986 2,994 312,442 0.009584 0.941267 1,626,107 25.41
50 0.928746 0.071254 60,991 4,346 294,092 0.014777 0.915744 1,313,665 21.54
55 0.901744 0.098256 56,645 5,566 269,312 0.020667 0.871674 1,019,573 18.00
60 0.838328 0.161672 51,080 8,258 234,753 0.035178 0.814747 750,260 14.69
65 0.786618 0.213382 42,821 9,137 191,264 0.047773 1.695266* 515,508 12.04
70+ 0. 1.000000 33,684 33,684 324,244 0.103885 0. 324,244 9.63

SOURCES: Rogerts (1982b) and Appendix A.
*this s(x) exceeds unity because it refers to survivorship into an open-ended age interval. Because not all membes in that interval
die over a period of five years, a “correction” must be incorporated into the value of s(x).
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All of the columns in a life table originate from a set of probabilities of dying at each age, q(x). By applying,
in sequence, a particular set of such probabilities to a cohort of arbitrary size, commonly taken to be 100,000
babies and denoted by `(0), we can observe the diminution of this cohort (referred to by demographers as the
life table’s radix) as the life table population ages. For example, the number of survivors at each exact age is
given by

`(x+ 5) = [1− q(x)]`(x) (3.13)

This implies that deaths can be obtained by subtraction as

d(x) = `(x)− `(x+ 5) (3.14)

The number of years lived by the life table cohort in each age group is denoted by L(x). Generally, this
measure is calculated by assuming that the curve of survivors, `(x), declines linearly from one age to the
next. Thus, over a five-year interval, the `(x+ 5) survivors out of the initial `(x) individuals lived a full 5
years, whereas those who died in the interval lived, on average, two-and-one-half years. Hence,

L(x) = 5`(x+ 5) + 5/2 d(x) (3.15)
= `(x+ 5) + 5/2[`(x)− `(x+ 5)]
= 5/2[`(x) + `(x+ 5)]

For example, in Column 4 of Table 3.1 we see that 63,986 of 66,198 persons at age 40 survived to age 45. If
the 2,212 deaths were distributed uniformly over the age interval, then the 2,212 individuals who died lived
an average of two-and-one-half years each, or 5/2 (2,212) = 5,530 person-years. The 63,986 who survived
lived a full 5 years each, or 5(63,986) = 319,930 person-years. Hence the total number of person years lived
by the cohort during the five-year interval between ages 40 and 45, was

L(40) = 5(63, 986) + 5/2(2, 212)
= 319, 930 + 5, 530
= 325, 460

The slight discrepancy from the number set out in Table 3.1 is due rounding.

An alternative interpretation of `(x) and L(x) is also useful. Instead of thinking of these measures as referring
to the descendants of a cohort of 100,000 babies, we may view them instead as describing a stationary (zero
growth) life table population that is fixed in size as well as in age composition. This population experiences
100,000 births and deaths each year and includes `(x) persons at exact age x and L(x) individuals in the age
group x to x+ 4. This latter interpretation is particularly useful in understanding how to define s(x), the
fraction of the population in each age group that survives to the next age group. For if L(x+ 5) denotes the
survivors of those previously included in L(x), then clearly

s(x) = L(x+ 5)
L(x) = L(x+ 5)L(x)−1 (3.16)

Another life table statistic is the age-specific life table death rate, m(x), which is defined as

m(x) = d(x)
L(x) (3.17)

If, as in Table 3.1, this life table death rate is equal to its counterpart in the observed population, then

L(x) = d(x)
M(x) (3.18)

The last two columns of the life table describe the total number of person-years lived (or total life table
population) beyond each age, T (x), and the average expectation of remaining life at each age, e(x). The
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former is simply the sum of the L(x) values after a give age–a quantity that if divided by the `(x) at that age
defines the latter statistic. Thus

T (x) =
∞∑
y=x

L(y) (3.19)

and
e(x) = T (x)

`(x) (3.20)

The value e(0) is the expectation of life at birth. For India, on 1970 rates, it was 48.86 years according to
Table 3.1.
The terminal age group in a life table is open-ended, z years and over. For this age group, q(z) is set equal
to unity, and the statistics M(z), `(z), T (z), and e(z) all refer to the interval age z and over. Thus, it is
necessary to modify equation 3.15 in order to calculate L(x). Setting x = z in 3.18 gives

L(z) = d(z)
M(z) (3.21)

and, because each of the `(z) individuals will ultimately die, `(z) = d(z), whence

L(z) = `(z)
M(z) = M(z)−1`(z) (3.22)

By definition,
T (z) = L(z) (3.23)

consequently,
e(z) = T (z)

`(z) = L(z)
`(z) (3.24)

3.3 Urbanization in the Soviet Union Revisited
In Chapter 1 we considered a uniregional urbanization projection model that ignored age. The projected urban
population was obtained as a residual-the difference between the projected national and rural population
totals. An analogous approach may be used to obtain the projected urban population disaggregated by age.
One first projects the national and rural age distributions and then takes the urban population to be their
difference.
Consider the demographic data for the Soviet Union that are set out in Table 3.2. A uniregional life
table for the Soviet Union gives an expectation of life at birth of 70.04 years and a life table population
of L(0) = 491, 405 individuals in the first five-year age group. Ratios of consecutive age-specific life table
populations define the s(x) values. How does one obtain the fertility elements b(x) from the observed birth
rates F (x)?
Usually the annual birth rate, F (x), is applied to the arithmetic mean of the initial and final populations
aged x to x+ 4 years at last birthday:

P (x; t) + P (x; t+ 1)
2 = 1/2[P (x; t) + s(x− 5)P (x− 5; t)] (3.25)

and, because this population is exposed to the fertility regime over a time interval of five years, we multiply
equation 3.25 by 5. Thus, this age group’s contribution to the total number of births during the five years is

5/2[P (x; t) + s(x− 5)P (x− 5; t)]F (x) (3.26)

Adding this quantity over all of the childbearing age groups, starting α and ending with β− 5, yields (Keyfitz,
1968, p. 30):

5/2
β−5∑
x=α

[P (x; t) + s(x− 5)P (x− 5; t)]F (x) = 5/2
β−5∑

x=α−5
[F (x) + s(x)F (x+ 5)]P (x; t) (3.27)
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TABLE 3.2 National Population Distribution, Death Rates, and Birth Rates:
Soviet Union, 1970

Age Population Death Rate Birth Rate
x (in thousands) M(x) F (x)
0 20,533 0.0070
5 24,503 0.0007
10 25,017 0.0006
15 22,023 0.0010 0.0152
20 17,124 0.0016 0.0828
25 13,785 0.0022 0.0662
30 21,168 0.0028 0.0455
35 16,612 0.0038 0.0251
40 19,024 0.0048 0.0084
45 12,269 0.0061 0.0018
50 9,088 0.0088
55 12,027 0.0119
60 10,348 0.0182
65 7,267 0.0278
70+ 10,932 0.0766

Total 241,720 0.0083 0.1748
SOURCE: Rogers (1978a).

Equation 3.27 describes the total number of births that are expected during the five-year time interval. But
what is needed is the total number of babies that survive to the start of the next time interval. Hence 3.27
should be multiplied by the survival factor L(0)/5`(0). Thus, we have that

P (0; t+ 1) =
β−5∑

x=α−5

L(0)
2`(0) [F (x) + s(x)F (x+ 5)]P (x; t) =

β−5∑
x=α−5

b(x)P (x; t) (3.28)

where
b(x) = 1/2L(0)`(0)−1[F (x) + F (x+ 5)s(x)] (3.29)

If α = 15, the assumed age when women can start bearing children, we obtain the projection matrix:

G =



0 0 L(0)
2`(0)

(
L(15)
L(10)F (15)

)
L(0)
2`(0)

(
F (15) + L(20)

L(15)F (20)
)

. . . 0

L(5)
L(0) 0 0 0 . . . 0

0 L(10)
L(5).. .

0 0 . . . 0

...
... . . . ...

0 0 . . . 0


(3.30)

The contribution made to the first age group in the Soviet Union at time t+ 1 by surviving children of 20- to
24-year-old parents at time t is

b(20) = 1/2(4.9141)[F (20) + 0.9904F (25)] (3.31)

into which we may substitute F (20) = 0.0828 and F (25) = 0.0662 to find b(20) = 0.3645.
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A uniregional age-disaggregated projection of the Soviet Union’s 1970 population to the year 2000, using
the data set out in Table 3.2 and the matrix model defined by equations 3.6 and 3.30, gives rise to the age
distribution presented in Column 2 of Table 3.3. The 1970 total of 241.7 million persons is expected to grow
to 322.9 million by the year 2000, and the average annual rate of growth during the 1995-2000 interval should
be about 1.1% per annum.

TABLE 3.3 Uniregional Cohort-Survival Projections of Total, Rural, and (by subtraction)
Urban Populations of the Soviet Union to the Year 2000

Age Population (in thousands)* Age Composition*

x Total Urban Rural Total Urban Rural
(1) (2) (3) (4) (5) (6) (7)
0 26,181 20,574 5,607 0.0811 0.0800 0.0855
5 25,563 19,569 5,994 0.0792 0.0761 0.0914
10 25,931 19,325 6,606 0.0803 0.0751 0.1008
15 25,379 19,299 6,080 0.0786 0.0750 0.0927
20 23,226 19,193 4,033 0.0719 0.0746 0.0615
25 20,828 18,048 2,780 0.0645 0.0701 0.0424
30 19,421 16,587 2,834 0.0602 0.0645 0.0432
35 23,243 20,067 3,176 0.0720 0.0780 0.0484
40 23,307 20,323 2,984 0.0722 0.0790 0.0455
45 20,050 17,990 2,060 0.0621 0.0699 0.0314
50 15,120 13,271 1,849 0.0468 0.0516 0.0282
55 11,673 9,071 2,602 0.0362 0.0353 0.0397
60 16,847 12,422 4,425 0.0522 0.0483 0.0675
65 11,993 8,154 3,839 0.0371 0.0317 0.0586
70+ 34,092 23,397 10,695 0.1056 0.0909 0.1631

Total 322,855 257,290 65,563 1.0000 1.0000 1.0000

Share 1.0000 0.7969 0.2031

Annual
growth
rate 0.0108 0.0157 -0.0133

SOURCE: Rogers adn Philipov (1980).
*Slight differences are due to independent rounding.

Repeating the above uniregional projection exercise with the Soviet Union’s 1970 rural population, using data
set out in Rogers and Philipov (1980) and treating net rural outmigration as another source of “mortality”
gives rise to the rural population totals presented in Column 4 of Table 3.3. Subtracting these totals from
those set out in Column 2 gives the figures for the urban population presented in Column 3. The reader
should compare the results of these projections of the Soviet Union’s urbanization with those presented earlier
in Chapters 1 and 2.

3.4 Zero Population Growth
Modern projections of world population have adopted the component approach in two distinct senses of the
word. First, they have identified the separate contributions of age-specific rates of fertility and mortality to
changing patterns of population growth and composition; and, second, they have focused attention on the
diverse patterns of growth and change exhibited by individual national and regional populations, aggregating
these separate totals to obtain global projections. Such efforts have been made possible by recent advances in
demographic knowledge, data, and computational methods and facilities.

One of the early contributions to modern global population projections was the set prepared by Frejka (1973).
What distinguished his projections from those previously carried out by others was his explicit adoption of a
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set of assumptions that specified the period of time during which fertility in each country or world region
was expected to change from its present level to bare replacement level. It was assumed that fertility would
remain constant thereafter.
More recently, Littman and Keyfitz (1977) and the World Bank (1983) have issued global population
projections for a large number of individual countries. Such detail enhances the possibilities of critical
evaluation and permits the grouping of individual national totals into aggregates on the basis of criteria other
than spatial contiguity.
A common feature of most modern global population projections, then, is the notion of replacement level
fertility. This is taken to be the fixed level of fertility that ensures ultimate zero population growth, or
stationarity. A stationary population is a stable population with a zero growth rate. As with all stable
populations, the age composition remains constant over time and each population subgroup grows at the
same fixed rate- in this instance a zero population growth (ZPG) rate.
Central to the notion of replacement level fertility is the net reproduction rate, NRR. This is the average
number of children of a single sex (baby girls say) expected to be born in the future to a child of the same
sex (baby girl, say) just born:

NRR =
∞∑
x=0

L(x)
`(0) F (x) (3.32)

where L(x) is the life table population aged x to x+ 4 years, and F (x) is the annual birth rate of individuals
in that age group. Thus, NRR may be interpreted as the ratio of the number living in two successive
generations that is implied by current rates of birth and death. An absence of migration is assumed, and the
population is said to be experiencing replacement level fertility when NRR = 1.
The net reproduction rate confounds the impacts of fertility, F (x), with those of mortality, L(x). A “pure”
measure of fertility can be obtained by eliminating the effects of the latter component in equation 3.32.
Setting all L(x) = 5`(0), where 5 is the width of the age interval in years, we have the definition of the gross
reproduction rate:

GRR = 5
∞∑
x=0

F (x) (3.33)

which is a function only of fertility.
Clearly there are many ways by which a schedule of fertility rates F (x) can be reduced to yield an NRR of
unity, given the fixed mortality schedule reflected by the set of L(x) values. Analyses of trajectories toward
zero population growth almost always assume that every age specific birth rate is reduced proportionately.
Thus, if the original net reproduction rate is above unity, the reduced birth rates are defined by the relation

F (x) = F (x)
NRR

(3.34)

If the population projection is carried out with the reduced birth rates, F (x), an eventual convergence to
zero population growth is ensured if the population is undisturbed by migration.
For example, using the data set out in Appendix A and in Table 3.1, the national net reproduction rate
for India can be found to be 1.83. A drop to replacement level fertility would therefore be achieved if each
age-specific national birth rate, F (x), were reduced by 100(1 – 1/1.83) =45.4%. Zero population growth
would not follow immediately, however, because of the momentum for growth that is embodied in India’s age
composition.
Because of their much higher fertility, less developed nations have a much younger age composition than
developed countries and, therefore, a far greater built-in tendency for further growth. A country with a
recent history of high birth rates such as Mexico, for example, exhibits an age composition that has the shape
of a pyramid with a broad base at the youngest age groups and a sharp tapering off at the older age groups.
On the other hand, a country with a history of low birth rates, such as Sweden, has an age composition that
yields an almost rectangular age pyramid (Figure 3.1).
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SOURCE: Redrawn from Berelson (1974) with the permission of the Population Council from “World Population:
Status Report 1974,” by Bernard Berelson, Reports on Population/Family Planning, No. 15 (January 1974),
pp. 12,13.

Figure 3.1 Young and Old Population Age Composition

Populations in which children outnumber parents potentially have a larger number of parents in the next
generation than today and therefore acquire a built-in momentum for further growth, even if their fertility
suddenly drops to bare replacement levels. Thus, if fertility levels in developing countries dropped to bare
replacement immediately, this would produce zero population growth only after 70 years or more, and the
resulting stationary population would be about two-thirds larger than the current one (Figure 3.2). If the drop
were to take about 70 years to achieve, the increase would be about 450%. In other words, the momentum
with the immediate fertility decline is about 1 2

3 , and with delayed decline about 5 1
2 .

Populations in all developed countries have gone through a process of demographic change in which a
decline in mortality eventually was followed by a drop in fertility. Demographers refer to this transformation
as the demographic transition and associate it with socioeconomic changes that arise during a nation’s
industrialization and modernization. Although the progress has been far from uniform, and its linkages
with changes in socioeconomic variables have not been clearly identified, the universality of this historical
demographic revolution in what today are the developed countries is nevertheless quite impressive.
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SOURCE: Redrawn from Berelson (1974) with the permission of the Population Council from “World Population:
Status Report 1974,” by Bernard Berelson, Reports on Population/Family Planning, No. 15 (January 1974),
pp. 12,13.

Figure 3.2 Momenta of Population Growth for Developed and Less Developed Countries

3.5 The National and Global Population Projections of the United Nations
In its 1980 assessment, the Population Division of the United Nations extended for the first time its periodically
issued projections of future population to 2025 (United Nations, 1981). This assessment of future prospects,
the most important and most widely used source of demographic projections with a global coverage, is built
around a central (“medium variant”) projection that reflects the evolution predicted by the demographic
transition. The projections portray a demographic future that incorporates population stabilization at low
levels of fertility and mortality (and international migration), with the only important difference among
these projections being the timing of the onset of replacement level fertility. Alternative projections that
bracket the medium variant projection are included to illustrate the consequences, to population growth and
composition, of particular deviations in the adopted assumptions. Fertility levels in developed countries are
assumed to decline or to remain below replacement until around the end of this century, after which time
they are assumed to approach replacement level fertility.

Irrespective of whether the country is developed, with very low fertility (for example, the Federal
Republic of Germany or Japan), or developing with high fertility (for example, Bangladesh or the
Syrian Arab Republic), it is assumed that fertility will arrive at replacement levels in the not too
distant future [United Nations, 1984, pp. 30-32].

Figure 3.3 illustrates past and assumed future trends in fertility, as measured by gross reproduction rates
during the period from 1950 to 2025, for some of the larger countries in the world. Notice that once
the decline in fertility starts, it is expected to proceed slowly, gain momentum, then ultimately reduce its speed.
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SOURCE: United Nations (1984)

Figure 3.3 Gross Reproduction Rates for Selected Countries, 1950-2025, United Nations
Medium Variant

The mortality assumptions in the United Nations projections are expressed in the form of life expectancies at
birth and their associated age-sex-specific patterns of survivorship. Model life tables (Coale and Demeny,
1966, 1983) are used to define probabilities of surviving when national life tables are unavailable or unreliable.
In general, the projections assume that mortality trends will produce a quinquennial gain of 2.5 years in the
expectation of life at birth every five years, until life expectancy reaches 55 years, at which point a slowing of
this gain is expected. The maximum level of life expectancy at birth is fixed at 73.5 years for males and 80
years for females, in accordance with current demographic experience in several developed countries.

For most countries, net international migration is a relatively insignificant contributor to population change;
consequently, it is usually assumed to be zero for projection purposes. However, in a number of countries, for
example, the United States, such a simplification is inadequate. Consequently, the United Nations’ projections
incorporate a contribution due to net international migration for 60 countries, where such migration was
viewed to be nonnegligible in 1975-1980. This volume of net migration is progressively reduced to zero over
time, except in those few countries where a continuation of current migration levels is likely for a considerable
time in the future (for example, Mexico, Polynesia, and the United States).

Table 3.4 presents the United Nations’ projections for major subregions and the world, as assessed in 1980.
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TABLE 3.4 United Nations Population Estimates and Medium Variant Projections (in millions)
for Major Subregions and the World, 1960-2025

Gross Reproduction Rate Expectations of Life at Birth Projected Population
1960 1980 1975-1980 2020-2025 1975-1980 2020-2025 2000 2025

World Total 3,037 4,432 1.92 1.15 57.5 70.4 6,119 8,195
More Developed Regions 945 1,131 1.00 1.04 71.9 75.4 1,272 1,377
Less Developed Regions 2,092 3,301 2.27 1.17 55.1 69.6 4,847 6,818
Africa 275 470 3.13 1.49 48.6 67.2 853 1,542
Latin America 216 364 2.24 1.35 62.5 71.8 566 865
Northern America 199 248 0.94 1.02 73.0 75.1 299 343
East Asia 816 1,175 1.46 0.96 67.6 74.8 1,475 1,712
South Asia 877 1,404 2.57 1.05 50.6 68.6 2,075 2,819
Europe 425 484 0.96 1.02 72.0 75.7 512 522
Oceania 16 23 1.39 1.10 65.6 73.8 30 36
USSR 214 265 1.16 1.10 69.6 74.6 310 355

SOURCE: United Nations (1981)

In conclusion, a disaggregation of a national population by age is a fundamental dimension of the projection
models used by international organizations such as the United Nations and the World Bank, and national
agencies such as the U.S. Bureau of the Census. When applied to subnational populations, these models
generally rely on projected age-specific net migration totals to link the demographic evolution of each
regional population with that of the rest of the nation’s population. This procedure, however, can introduce
inconsistencies that will inflate or deflate national totals. A conceptually more elegant and practically more
reliable method of projecting subnational populations is a “bottoms-up” approach that simultaneously focuses
on all subpopulations and considers both their ages and their respective regions of residence. This is the
topic of the next chapter.
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4 MULTIREGIONAL POPULATION DYNAMICS: AGE AND
LOCATION 1

The evolution of an age-disaggregated multiregional population is governed by the history of fertility, mortality,
and territorial mobility to which it has been subjected. This is true not only of the past but also of the future.
Thus, multiregional population projections are simply mathematical calculations that show the consequences,
to a particular national population, of a set of assumptions regarding birth, death, and migration rates.
Therefore, in the absence of an arithmetical error, the projections are correct irrespective of the future
behavior of the population being projected. This is true because such projections are not predictions of what
will actually happen but are hypothetical exercises that arithmetically establish the numerical impacts of
assumptions made regarding expected patterns of fertility, mortality, and migration. The consequences that
the projections identify are conditional on the assumptions being fulfilled.
Demographers in the past have focused on uniregional populations that are assumed to be undisturbed by, or
“closed to,” migration. When migration was included at all, it usually was introduced by means of the notion
of “net” migration. But net migrants are a statistical fiction, and net migration rates confound the impacts
of changing migration propensities with those of changing population totals in origin and destination regions.
Consequently, behavioral explanations of net migration may be misspecified, and spatial population analyses
based on net migration rates are likely to mask important patterns underlying population redistribution.
These inadequacies of the uniregional approach led scholars in the mid-1960s to analyze the dynamics of spatial
population change from a multiregional perspective. Subsequently, the marriage of multiregional projection
models with multiregional life table models, and their expression in matrix form, to show transparently their
natural correspondence with widely accepted conventional uniregional methods, established multiregional
mathematical demography as a serious branch of analytical population studies (Rogers, 1975). The first two
sections of this chapter set out the bare· essentials of these projections and life table models. The models
then are used to (l) examine once again the sources of urban growth; (2) simulate alternative patterns of
population growth and urbanization in a prototype less developed country; and (3) project the future marital
status and regional distributions of Sweden’s female population.

4.1 The Multiregional Projection Model
To generalize the uniregional projection model (Chapter 3) to the case of several interacting regional
populations (Chapter 2) one needs to replace scalars by matrices and vectors in all of the fundamental
relationships defined in Chapter 3 (Rogers, 1975). Without loss of generality, we shall limit our exposition to
the case of two regional populations, urban and rural, distinguishing them with one subscript in the case
of population stocks and with two in the case of origin destination-specific population flows. We begin by
introducing a regional disaggregation in the uniregional projection model defined in equation 3.6. This may
be achieved by replacing each scalar in that equation with either a matrix or a vector. Thus,

(1) each P (x; t) is replaced by the vector P(x; t), where

P(x; t) =
[
Pu(x; t)
Pv(x; t)

]
(4.1)

(2) each s(x) is replaced by the matrix S(x), where

S(x) =
[
suu(x) svu(x)
suv(x) svv(x)

]
and (4.2)

(3) each b(x) is replaced by the matrix B(x), where

B(x) =
[
buu(x) bvu(x)
buv(x) bvv(x)

]
(4.3)

1Portions of this chapter were reprinted from my chapter in McMains and Wilcox’s Alternatives for Growth: The Engineering
and Economics of Natural Resources Development, Copyright 1978 by the National Bureau of Economic Research, Inc. Reprinted
by permission from Ballinger Publishing Company.
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The single subscripts u and v refer, respectively, to urban and rural locations of stocks; a pair of subscripts
denotes a flow from one location to another during the unit time interval. For example, Pu(x; t) is the
population aged x to x+ 4 at last birthday residing in the urban region at time t; svu(x) is the fraction living
in the rural region when aged x to x+ 4 at last birthday and in the urban region five years later; and buv(x)
is the average number of babies born during the unit age-time interval, and living in the rural region at the
end of that interval, per person aged x to x+ 4 at last birthday and living in the urban region at the start of
the interval.

Figure 4.1 sets out a simple biregional, four-age-group numerical illustration. It can be viewed as a
disaggregation of the numerical example presented in Chapter 3. Once again, the reader should confirm that
the matrix projection process ultimately stabilizes and exhibits both an unchanging growth ratio and a fixed
age composition.

Figure 4.1 A Biregional Numerical Example

The generalized projection matrix G in equation 3.7 now takes on the form:

G =


0 0 B(10) B(15) . . .

S(0) 0 0 0 . . .
0 S(5) 0 0 . . .
... . . . . . . ...

 (4.4)

and the fundamental matrix projection formula set out in 3.6 and in 2.15 remains valid, if

P(t) =

P(0; t)
P(5; t)
...

 (4.5)

The matrices S(x) and B(x) are readily defined by replacing scalars with matrices in equations 3.16 and 3.29,
respectively. Thus

S(x) = L(x+ 5)L(x)−1 (4.6)

and

B(x) = 1/2L(0)`(0)−1[F (x) + F (x+ 5)S(x)] (4.7)

where
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L(x) =
[
uLu(x) vLu(x)
uLv(x) vLv(x)

]
`(0) =

[
100, 000 0

0 100, 000

]

F (x) =
[
Fu(x) 0

0 Fv(x)

]
and where the reciprocal notation of a minus one denotes matrix inversion (Rogers, 1971).

The matrix L(x) is calculated by replacing scalars by matrices in equation 3.15 to obtain

L(x) = 5/2[`(x) + `(x+ 5)] (4.8)

where
`(x) =

[
u`u(x) v`u(x)
u`v(x) v`v(x)

]
and L(x) is defined as before. The subscripts on the left side of L(x) and `(x) denote region of birth, those
on the right side designate the region of current residence. Note that a second subscript on the right side is
used to designate the region of future residence in variables such as s(x), b(x), and p(x).

The successive `(x) matrices may be computed by starting with 100,000 births in each region and surviving
these two cohorts of babies forward, with probabilities of survival that are specific to region of residence at
the start and end of the unit age interval:

`(x+ 5) = p(x)`(x) (4.9)

where the matrix of survival probabilities

ρ(x) =
[
puu(x) pvu(x)
puv(x) pvv(x)

]

should not be confused with the vector P(t) that refers to the population stock at time t.

The element pij(x) in the matrix ρ(x) represents the probability that an individual in region i at exact age x
will survive and be in region j five years later. Note that it does not denote the probability of making a move
from i to j. Several moves may have been made during the unit age interval of five years. The life table is
only interested in where members of the population were at the start and end of that interval.

Finally, we come to the generalization of the fundamental calculation that initiates the construction of a life
table. Recalling equation 3.12, we replace scalars by matrices to obtain the matrix of survival probabilities
(Rogers and Ledent, 1976):

ρ(x) = [I + 5/2M(x)]−1[I − 5/2M(x)] (4.10)

where
M(x) =

[
Mud(x) +Muv(x) −Mvu(x)
−Muv(x) Mvd(x) +Mvu(x)

]
and I is the identity matrix.

The element Mij(x) in matrix M(x) denotes the age-specific migration rate from region i to region j; the
element Mid(x) denotes the age-specific death rate in region i. For the last open-ended age group, z years
and over, the matrix M(z) is used to close-out the life table:

L(z) = M(z)−1`(z) (4.11)

Note that equation 4.11 is the multiregional generalization of equation 3.22.
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4.2 Urbanization in India Revisited
The death rate in India’s urban areas among 0- to 4-year-olds in 1970 was, at 38.248 per thousand, considerably
lower than the corresponding rate in rural areas, which stood at 57.712 per thousand (Appendix A). The
outmigration rate for the same age group was 9.325 per thousand from urban areas and 5.552 per thousand
from rural areas. Expressing these rates on a per capita basis, and collecting them to form the matrix M(x)
defined in equation 4.10, gives

M(0) =
[
0.038248 + 0.009325 −0.005552

−0.009325 0.057712 + 0.005552

]
and the associated matrix of transition probabilities

ρ(0) = [I + 5/2M(0)]−1[I − 5/2M(0) =
[
0.787865 0.021425
0.035989 0.727312

]
(4.12)

The probability matrix informs us that just over one out of fifty (0.021425) babies born in the rural areas will
be living in urban areas 5 years later. Thus, out of a rural birth cohort of 100,000 babies, 2,143 will be found
residing in urban areas at exact age 5, another 72,731 will be living in rural areas, and 25,126 babies will have
died before their fifth birthday. The corresponding totals for the urban birth cohort are 3,599 in rural areas,
78,786 in urban areas, and 17,615 dead. These results may be obtained by simple matrix multiplication, as
defined in equation 4.9:

`(5) = ρ(0)`(0) (4.13)

=
[
0.787865 0.021425
0.035989 0.727312

] [
100, 000 0

0 100, 000

]
=
[
78, 786 2, 143
3, 599 72, 731

]
Having found values for `(0) and `(5), we draw on equation 4.8 to calcualte

L(0) = 5/2[`(0) + `(5)] (4.14)

=
[
446, 966 5, 356
8, 977 431, 828

]
An analogous set of calculations gives

L(5) =
[
384, 001 13, 857
23, 792 355, 099

]
whence, by equation 4.6,

S(0) = L(5)L(0)−1 (4.15)

=
[
0.858696 0.021439
0.036686 0.821862

]
The matrix S(0) resembles ρ(0), and so it should. Both represent similar transition probabilities; however,
whereas the latter refers to populations at exact ages, the former refers to populations classified into age
groups. Thus ρ(0) is applied to `(0) to yield `(5) and S(0) is applied to L(0) to give L(5). Each value in the
matrix S(0) should normally lie within the range defined by the two corresponding values in the matrices
ρ(0)and ρ(5).
The four values calculated for the elements of S(0) are set out in Table 4.1, along with corresponding values
for all other age groups. They may be used to survive India’s 1970 urban and rural populations(Appendix A).
For example, recalling equations 4.4 and 4.5, we observe that[

Pu(x+ 5; t+ 1)
Pv(x+ 5); t+ 1)

]
=
[
suu(x) svu(x)
suv(x) svv(x)

] [
Pu(x; t)
Pv(x; t)

]
(4.16)
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which for x = 0 gives the following projected 1975 population aged 5 to 9 at last birthday:[
13, 534, 947
53, 912, 489

]
=
[
0.858696 0.021439
0.036686 0.821862

] [
14, 140, 200
64, 966, 800

]

TABLE 4.1 Fertility and Survivorship Elements of the Population Projection Matrix: India,
1970

Fertility Elements Survivorship Elements
Age,x buu(x) buv(x) bvu(x) bvv(x) suu(x) suv(x) svu(x) svv(x)

0 0.858696 0.036686 0.021439 0.821862
5 0.957236 0.028591 0.018073 0.960723

10 0.069883 0.006145 0.003816 0.102052 0.946748 0.044240 0.034581 0.952089
15 0.252453 0.029194 0.018773 0.368544 0.904014 0.084133 0.071981 0.910900
20 0.378781 0.032549 0.021294 0.552139 0.900593 0.085333 0.071840 0.907690
25 0.360721 0.019368 0.012798 0.525156 0.936345 0.048957 0.036911 0.941430
30 0.283405 0.011788 0.008156 0.411861 0.947717 0.035121 0.025554 0.949044
35 0.174452 0.005915 0.004314 0.253223 0.950085 0.028518 0.020215 0.948075
40 0.083302 0.002677 0.001967 0.120781 0.945377 0.025801 0.017567 0.939788
45 0.026705 0.000538 0.000481 0.038792 0.935590 0.022110 0.014353 0.923247
50 0.912065 0.027142 0.016123 0.894760
55 0.869703 0.036763 0.020871 0.844249
60 0.810955 0.052643 0.028482 0.777584
65 1.959624∗ 0.366715 0.208395 1.449770∗

SOURCE: Rogers (1982b)
*These elements exceed unity because they refer to survivorship into an open-ended age interval. Because not all members in
that interval leave the population over a period of five years, a “correction” must be incorporated into the value of s(x).

Continuing in this manner for another 25 years, for all age groups except the first, gives rise to the projected
population in the year 2000 that is set out in Table 4.2. The first age group is projected by applying the
fertility submatrices B(x) to the population in the childbearing age groups. These submatrices are defined by
equation 4.7 and are readily calculated once the life table values for L(0) and S(x) are available. For example,
the fertility submatrix associated with India’s 20- to 24-year-old population is

B(20) = 1/2L(0)`(0)−1[F (20) + F (25)S(20)] (4.17)

=
[
0.378781 0.021294
0.032549 0.552139

]

These four values of bij(20) are presented in Table 4.1, together with corresponding values for all other
childbearing age groups. Collectively, they define the fertility-survivorship behavior in India that produces
the population in the first age group in the next time interval:

P(0; t+ 1) = B(10)P(10; t) +B(15); t) + . . .+B(45)P(45; t) (4.18)

=
[
17, 254, 648
76, 623, 839

]
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TABLE 4.2 Biregional Cohort-Survival Projection of teh Urban and Rural Populations of India
to the Year 2000

Age Population (in thousands)* Age Composition*

x Total Urban Rural Total Urban Rural
(1) (2) (3) (4) (5) (6) (7)
0 163,181 37,231 125,950 0.1553 0.1280 0.1657
5 127,799 31,167 96,632 0.1216 0.1072 0.1272
10 115,345 28,445 86,900 0.1098 0.0978 0.1144
15 102,424 26,237 76,187 0.0975 0.0902 0.1003
20 87,095 24,619 62,474 0.0829 0.0847 0.0822
25 74,851 22,608 52,242 0.0712 0.0777 0.0687
30 61,183 19,281 42,532 0.0588 0.0663 0.0560
35 74,163 22,884 51,279 0.0706 0.0787 0.0675
40 60,587 19,488 41,100 0.0577 0.0670 0.0541
45 41,023 13,735 27,288 0.0390 0.0472 0.0359
50 35,698 11,616 24,082 0.0340 0.0399 0.0317
55 31,563 9,182 22,381 0.0300 0.0316 0.0295
60 24,962 7,066 17,896 0.0238 0.0243 0.0236
65 19,072 5,566 13,507 0.0182 0.0191 0.0178
70+ 31,118 11,676 19,443 0.0296 0.0402 0.0256

Total 1,050,692 290,799 759,892 1.0000 1.0000 1.0000

Share 1.0000 0.2768 0.7232

Annual
growth rate 0.0210 0.0274 0.0186

The results in Table 4.2 indicate that India’s urban population in the year 2000 will total over 290 million
persons, account for 27.7% of the national population total and have been growing at the average rate of
2.74% per annum for the past five years (i.e., during the 1995-2000-time interval). Since the urban population
growth rate will be declining over time, its value in the year 2000 will drop to 2.50% (Table 4.3A.1).

4.3 The Sources of Urban Growth Once Again
In Chapter l we examined the demographic sources of urban growth using the uniregional model without a
disaggregation by age. In Chapter 2 we generalized the uniregional model into a biregional one and looked at
the question once again. There we concluded that the simple bioregional model’s guarantee of an ultimately
declining relative contribution of migration seriously limited its usefulness for resolving the question of
whether it is natural increase or net migration that is the principal source of urban population growth during
the urbanization transition. A more realistic model was called for, and we now propose to look at the matter
once more using an age-disaggregated biregional model.

Table 4.3 sets out age-specific population projections for India and for the Soviet Union. The projections
show that exposing India to the migration rates of the Soviet Union would urbanize India in 50 years to the
level ultimately attained by the Soviet Union, whereas introducing India’s migration rates into the Soviet
Union’s growth regime would rapidly “deurbanize” that national population.

The introduction of age composition alters the results in favor of migration as a contributor to urban growth.
In the Indian case it as increases migration’s ultimate contribution threefold (from 6.0% to 19.8%); in the
Soviet Union example it reverses the ranking itself making migration the principal source of urban growth.
What accounts for this reversal?
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TABLE 4.3 Age-Disaggregated Projections of Observed Populations Exposed to Different
Regimes of Growth: India and the Soviet Union

A. India’s Population
2. India’s Natural Increase Rates with

1. India’s Growth Regime Soviet Union’s Migration Rates
100U ru mu mu/ru × 100 T 100U ru mu mu/ru × 100
19.9 0.037 0.017 47.1 1970 19.9 0.175 0.155 88.8
21.6 0.035 0.015 42.8 1975 33.4 0.087 0.058 67.1
23.3 0.033 0.014 41.2 1980 44.4 0.065 0.038 57.9
27.7 0.025 0.009 33.8 2000 69.8 0.026 0.007 26.2
30.1 0.023 0.006 28.2 2020 77.1 0.017 0.002 10.9
33.8 0.019 0.004 19.8 Stability 79.0 0.014 0.001 3.8

B. Soviet Union’s Population
2. Soviet Union’s Natural Increase Rates

1. Soviet Unions’s Growth Regime with India’s Migration Rates
100U ru mu mu/ru × 100 T 100U ru mu mu/ru × 100
56.3 0.025 0.016 63.8 1970 56.3 0.004 -0.005 -132.8
60.5 0.020 0.012 59.5 1975 54.5 0.003 -0.004 -156.9
64.4 0.018 0.011 57.4 1980 52.8 0.002 -0.003 -167.4
73.4 0.005 0.003 60.9 2000 45.6 -0.002 -0.002 87.0
76.9 0.004 0.002 44.9 2020 39.6 0.002 0.000 27.3
77.5 0.002 0.001 72.7 Stability 29.3 0.010 0.007 71.8

SOURCE: A. Rogers (1982a). “Sources of Urban Population Growth and Urbanization, 1950 - 2000: A Demographic Accounting.”
Economic Development and Cultural Change 30(3): 483-506. Copyright: University of Chicago Press, 1982 Reprinted with
permission.

The disaggregation by age does not change the pattern of evolution of the aggregate urban net inmigration
rate mu(t). In both the Indian and the Soviet illustrations, it declines sharply from its initial level. But now
the aggregate rate of natural increase no longer remains constant, dropping from 2% to 1.5% in the case of
India and from 0.9% to 0.05% in the case of the Soviet Union. The cause of this decline in the aggregate rate
is, of course, the gradual aging of the population and the associated in its age composition. This shift alters
the relative weights with which the fixed age-specific rates are consolidated to form the aggregate rates. The
net result is an increased relative contribution of net migration as a source of urban population growth, a
consequence apparently of the fact that, as with mortality (but not with fertility), the risks of migration are
experienced by individuals of all ages.

Table 4.3 illustrates the short-run impacts of high rates of rural to urban migration on urban natural increase.
In Table 4.3A.2, for example, the crude rate of urban natural increase, ru −mu, fixed at 20 per 1,000 in
Table 2.1, now approaches 29 per 1,000 in 1975 (0.087 - 0.058 = 0.029) and 27 per 1,000 in 1980 (0.065 -
0.038 = 0.027) before declining to roughly half those levels in the subsequent decades. Nevertheless, the
even higher short-run rates of net urban inmigration ensure the primacy of migration as a source of urban
growth for over two decades. Observe that increasing rural to urban migration still produces an ultimately
lower urban growth rate, but now only after migration ceases to be the principal source of urban population
growth-a crossover that, in the illustration, occurs when the national population is about 50% urban.

In conclusion, it appears that the principal effect of introducing age composition into the fixed-rate projection
model is to decrease the aggregate rate of natural increase over time, while slowing down the decline of the
urban net migration rate. Because these two contributors to urban growth now can exhibit different rates of
decline over time, their relative importance as sources of urban growth also can change, and in patterns that
are difficult to anticipate.

The decompositions presented here have attempted to identify the contributions of migration and natural
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increase to urban population growth over time. The focus has been on estimating the fraction of growth at
each moment, t, that could be attributed to the migration or natural increase rates prevailing at that same
moment. But migrants bear children, and it may be desirable to identify that particular contribution to
urban growth more explicitly in efforts to answer the question of whether it is migration or natural increase
that is the major source of urban population growth. A convenient way of approximating this contribution is
to disaggregate the projection model further to permit it to keep track of the respective places of birth of the
projected populations.

A number of studies dealing with the urban problems of the less developed world today view with concern the
high fractions of urban residents born in rural areas, implying that these high fractions of “lifetime migrants”
reflect high rates of rural-to-urban migration. Table 4.4 indicates that this may not necessarily be true by
presenting the results of a further disaggregation of the age-specific projections summarized earlier in Table
4.3. The additional disaggregation is by place of birth (Philipov and Rogers, 1981). Because no data are
available to disaggregate the initial 1970 population along this dimension, we focus only on the allocation
that evolves at stability, inasmuch as this result is independent of the starting condition and is a function
only of the particular growth regime.

TABLE 4.4 Age-Disaggregated Place-of-Residence-by-Place-of-Birth Projections of Observed
Populations Exposed to Different Regimes of Growth: India and the Soviet Union

A. India’s Population
2. India’s Natural Increase Rates

1. India’s Growth Regime with Soviet Union’s Migration Rates
100U 100UN 100UA T 100U 100UN 100UA
19.9 19.9 0 1970 19.9 19.9 0
21.6 19.1 2.6 1975 33.4 20.7 12.8
23.3 18.6 4.6 1980 44.4 23.8 20.6
27.7 18.6 9.1 2000 69.8 39.5 30.3
30.1 19.4 10.7 2020 77.1 51.3 25.7
33.8 23.6 10.2 Stability 79.0 66.9 12.1

B. Soviet Union’s Population
1. Soviet Union’s Growth Soviet Union’s Natural Increase

Regime Rates with India’s Migration Rates
100U 100UN 100UA T 100U 100UN 100UA
56.3 56.3 0 1970 56.3 56.3 0
60.5 53.9 6.6 1975 54.5 52.9 1.6
64.4 53.2 11.3 1980 52.8 50.0 2.8
73.4 53.5 20.0 2000 45.6 39.5 6.2
76.9 55.2 21.8 2020 39.6 31.0 8.6
77.5 61.2 16.4 Stability 29.3 16.5 12.8

SOURCE: A. Rogers (1982a). “Sources of Urban Population Growth and Urbanization, 1950-2000:” Economic Development
and Cultural Change 30 (3): 483-506. Copyright University of Chicago Press, 1982. Reprinted with permission.

The place-of-residence-by-place-of-birth (PRPB) projections demonstrate that the existence of a large fraction
of rural-born urban residents is not necessarily an indication of high rural-to-urban migration rates. Indeed,
the association is apparently the other way around. High rates of rural-urban migration, such as those
experienced in the Soviet Union, for example, generate urban populations with a higher share of urban-born
“natives” than do lower migration rates, such as those found in India. The reason for this apparent paradox
is, once again, the influence of the urbanization level, U(t).

High rates of net urban inmigration produce high levels of urbanization, with the result that urban areas
account for increasingly larger fractions of national births over time. For example, on 1970 rates, roughly
three-fourths of all national births in the Soviet Union occur in urban areas at stability, compared with only
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one-fourth in India. This situation gives rise to a high fraction of natives in urban areas and explains why
only 21 % of the Soviet Union’s stable urban population is rural born, compared with India’s 30%.

The place-of-birth disaggregation can be carried one step further by keeping track of the place of birth of the
parent as well as that of the child. Such a projection disaggregates the native urban population into two
parts, separating the first-generation natives (urban-born children of rural-born parents) from the rest.

On 1970 rates, a projection that separately identifies first-generation natives shows that of the 23.6% urban
natives in India at stability, over a third (36.0%) are children of rural-born parents; whereas of the 61.2%
urban natives in the Soviet Union at stability, only about a fifth (21.9%) fall into this category. Thus, if
one includes the children of rural lifetime migrants into the accounting, more than half (55.3%) of India’s
ultimate urban population will consist of lifetime migrants and their direct (first generation) contribution to
urban natural increase. The corresponding result for the Soviet Union is only 38.5%.

Our major conclusion regarding the sources of urban growth is that this fundamental question does not
have a simple unequivocal answer. At different periods during a nation’s urbanization transition, its urban
population may grow primarily as a consequence of net urban inmigration; at other times the main contributor
may be urban natural increase. The “guaranteed” ultimate decline of the relative contribution of migration
projected by the simple model that disregards age is merely a direct consequence of the model specification,
which ignores the effects of age distribution.

The analysis of the demographics of urbanization and the changing contributions of natural increase and
migration over time lead us to put forward a few important observations:

(1) The principal effect of migration is to establish the level of urbanization, whereas that of natural
increase is to determine the rate of urban population growth.

(2) Although a sharp increase in the rate of rural to urban migration temporarily raises the urban population
growth rate, its ultimate effect is to urbanize the population more rapidly and thereby depress the
urban growth rate to a lower level than it would have reached in the absence of the increase.

(3) The relative importance of the two sources of urban population growth and urbanization may differ
depending on whether the focus is on periodical net additions to the urban population stock or on the
changing projected composition of that stock, for example, the disaggregation between natives and
lifetime migrants.

(4) A relatively large fraction of rural-born people among urban residents is not necessarily a sign of high
rural to urban migration rates.

Scholars and policymakers often disagree when it comes to evaluating the desirability of current rates of
rapid urban population growth and rural-urban migration in the less developed world. Some see these trends
as effectively speeding up national processes of socioeconomic development, whereas others believe their
consequences to be largely undesirable and argue that both trends should be slowed down.

Regardless of how desirable or feasible it may be to restrict the movement of people in the interests of national
welfare, it seems reasonable to ask whether such efforts could have a significant impact on the growth rates
of urban centers. Our simple decompositions do not provide a clear-cut answer, but they nevertheless do
cast some doubt on the matter, inasmuch as they indicate that slowing down rural-to-urban migration is not
likely to produce more than a short-run reduction of urban population growth rates unless fertility levels are
also reduced.

4.4 Simulating the Urbanization Transition
Urbanization is a finite process all nations go through in their transition from an agrarian to an industrial
society. Such urbanization transitions can be depicted by attenuated S-shaped curves (e.g., logistic curves)
that tend to show a swift rise in the proportion urban around 20%, a flattening out at a point somewhere
between 40% and 60%, and a halt or even a decline in this proportion at levels above 75%. They are
characterized by distinct urban-rural differentials in fertility-mortality levels and patterns of decline, and by
a massive net transfer of population from rural to urban areas through internal migration.
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In a now classic analysis of the demoeconomic consequences of fertility reduction, Ansley Coale (1969)
examined some of the ways in which the population characteristics of less developed countries are related to
their poverty and how alternative demographic trends might affect their development. Coale was concerned
with the implication of alternative possible future courses of fertility for the growth in per capita income
and for the provision of productive employment. He examined two specific alternatives: the maintenance of
fertility at its current level and a rapid reduction in fertility, over a transitional period of about 25 years,
amounting to 50% of the initial level.
After generating the two alternative projections or “scenarios,” Coale went on to consider the effects that
these two different trends in fertility would have on three important population characteristics: the burden of
dependency, defined as the total number of persons in the population divided by the number of persons aged
15 to 64; the annual rate of increase of the labor force, defined as the growth rate of the population aged 15
to 64; and population density, defined as the number of persons in the labor force ages relative to land area
and other resources.
A recent generalization of Coale’s scenario-building approach focuses on some of the demoeconomic conse-
quences of rapid urbanization (Rogers, 1978b). It begins by developing four alternative population scenarios
and then goes on to examine the implications that alternative trends in migration and fertility would have on
Coale’s three important population characteristics: the dependency burden, the growth rate of labor force
“eligibles,” and the density of the population.
As in the Coale paper, a hypothetical initial population of one million persons with an age composition and
fertility-mortality rates typical of a Latin American country was projected 150 years into the future. To his
alternative projections (A. fertility unchanged and B. fertility reduced), however, two others were added by
varying the assumptions on internal migration (a. migration unchanged and b. migration increased). This
produced the following four possible combinations:

a. Migration b. Migration
unchanged increased

A. Fertility Projection Aa Projection Ab
unchanged

B. Fertility Projection Ba Projection Bb
reduced

Coale’s assumptions about initial and future patterns of mortality and fertility were a crude birth rate of
about 44 per 1,000 and a crude death rate of 14 per 1,000, giving rise to a population growing at 3% per year.
Starting with an expectation of life at birth of approximately 53 years, he assumed that during the next 30
years it will rise to about 70 years, at which point no further improvement will occur. In Coale’s Projection
A current age-specific rates of childbearing are fixed for 150 years; in Projection B they are reduced by 2%
each year for 25 years (reducing fertility to half of its initial level), at which point they too are fixed for the
remainder of the projection period.
In the four urbanization scenarios, Coale’s data and assumptions were spatially disaggregated in the following
manner. Twenty percent of the initial population of a million persons was taken to be urban. The initial
values for birth and death rates were assumed to be lower in urban areas than in rural areas (40 against 45
per 1,000 for the birth rate, and 11 against 15 per 1,000 for the death rate). Mortality and fertility were
reduced as in the Coale projections, but the declines were assumed to occur ten years sooner in urban areas
(25 instead of 35 years for the decline in mortality, and 20 instead of 30 years for the decline in fertility).
Initial rates of outmigration were set equal to those prevailing in India in 1970 (Chapter 2); that is, a crude
outmigration rate from urban areas of 10 per 1,000 and a corresponding rate from rural areas of 7 per 1,000.
The age-specific rates of outmigration from urban areas were held fixed in all four projections, as were the
corresponding rates from rural areas in the two “a” projections. Outmigration from rural areas in the two “b”
projections, however, was assumed to increase six-fold over a period of 50 years and then to drop to half its
peak value over the following 30 years, after which it was held unchanged for the remaining 70 years of the
projection period.
The assumptions appear to be reasonable in that the hypothetical urbanization paths they chart are plausible.
For example, the percentage-urban paths for the “b” projections resemble the general shape of historically
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observed urbanization paths, and the trajectories of urban and rural growth rates for these projections are in
general similar to those exhibited by data for several developed nations.

As in Coale’s scenarios, the initial population and the future regime of mortality are the same for all of the
four population projections summarized in Figure 4.2. The major impact of the drop in fertility appears in
the projected totals: the “A” projection totals are about 24 times as large as the “B” projection totals after
150 years. Migration’s impact, on the other hand, appears principally in the spatial distribution of these
totals: the “a” projections allocate approximately a third of the national population to urban areas after 150
years, whereas the “b” projections double this share.

SOURCE: A. Rogers (1978b). From McMains and Wilcox’s Alternatives for Growth: The Engineering and Economics
of Natural Resources Development, Copyright 1978 by the National Bureau of Economic Research, Inc. Reprinted by
permission of Ballinger Publishing Company.

Figure 4.2 Alternative Projections of the Population of a Less Developed Country: Four
Scenarios.

The principal demographic impacts of reduced fertility described by component of change and by the
concomitant spatial subdivision of the national population into urban and rural sectors.Figures 4.3 and 4.4
show that for a given regime of migration (a or b), the major impacts of reduced fertility are, as in the Coale
model, a decline in the burden of dependency in the short run, a lowering of the growth rate of the labor
force population in the medium run, and a very much lower density of people to resources in the long run.
The spatial model, however, does bring into sharp focus urban-rural differentials in: (1) dependency burdens
and the relative magnitudes of their decline following fertility reduction and (2) initial growth rates of the
labor force populations and the paths of their gradual convergence in the long run.

The dependency ratio in urban areas is 19 points lower than its rural counterpart at the start of the projection
period. With constant fertility, the regional dependency burdens remain essentially unchanged. Declining
fertility, however, narrows these differentials to almost a third of their original values, as the urban drop of 33
points is matched by a corresponding decline of 45 points in rural areas.

The annual growth rates of the labor force populations in urban and rural areas initially are 0.05 and 0.03,
respectively. For both migration regimes, however, they converge to approximately the same values in the
long run: 0.04 in the constant fertility scenarios and slightly above 0.01 in the reduced fertility projections.
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SOURCE: A. Rogers (1978b). From McMains and Wilcox’s Alternatives for Growth: The Engineering and Economics
of Natural Resources Development, Copyright 1978 by the National Bureau of Economic Research, Inc. Reprinted by
permission of Ballinger Publishing Company.

Figure 4.3 Dependency Burden, Annual Rate of Increase, and Relative Size of Population
Aged 15-64 Years: Alternative Urban-Rural Projections, Migration Unchanged.

SOURCE: A. Rogers (1978b). From McMains and Wilcox’s Alternatives for Growth: The Engineering and Economics
of Natural Resources Development, Copyright 1978 by the National Bureau of Economic Research, Inc. Reprinted by
permission of Ballinger Publishing Company.

Figure 4.4 Dependency Burden: Annual Rate of Increase, and Relative Size of Population
15-64 Years: Alternative Urban-Rural Projections, Migration Increased
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The major demographic impacts of increased rural-urban migration for a given regime of fertility, as set out
in Figure 4.3 and 4.4, are negligible with respect to dependency burdens and are of paramount importance,
in the short and medium runs, with regard to the growth rate of the population aged 15 to 64. In the long
run, migration also has a moderately powerful impact on the density of workers to resources in rural areas.

Perhaps the most interesting observation suggested by the scenarios is the transitory nature of high rates
of urban growth. In the “b” projections, urban growth rates in excess of 6% per annum occur only in the
short run, as the national population is in its early phases of urbanization. This sudden spurt of growth of
urban areas in the short run declines over the medium run, and in the long run levels off at a rate below
that generated by the fixed migration regime. The growth curve of rural areas, of course, assumes a reverse
trajectory, with the growth of the rural working population declining to relatively low, even negative, levels
before increasing to stabilize at about the same level as that prevailing in the urban population.

Increased migration into cities reduces the size of rural populations and hence their density with respect
to rural resources such as agricultural land. Figures 4.3 and 4.4 show that the relative size of the rural
population aged 15 to 64 is over 2.5 times larger under the fixed migration schedules of projections “a” than
under the increased rural-urban migration rates of projections “b.” Thus the “b” scenarios create rapid
urban growth and exacerbate human settlement problems, but at the same time they reduce the density
of rural populations to land and other rural resources. The “a” scenarios, on the other hand, give urban
areas more time to cope with growth, but they do so at the cost of increasing rural population densities.
“Hyperurbanization” and “rural overpopulation,” therefore, are the two sides of a fundamental policy question
regarding spatial development.

4.5 Multistate Projections of Sweden’s Female Population
The mathematical apparatus for tracing the demographic consequences of movements of people between
urban and rural regions is the same as that for assessing the impacts of their movements between different
states of existence: for example, married to nonmarried, employed to unemployed, healthy to sick. This
recognition has had a profound impact on formal demography (Rogers, 1980; Land and Rogers, 1982). It
has produced a powerful generalization of conventional demographic techniques for studying the transitions
that people experience over their lifetime as they progress from birth to death. Governmental agencies such
as the U.S. Bureau of Labor Statistics (1982) have adopted this methodology, and the new International
Encyclopedia of Population describes it as a fundamental new departure that brings

many demographic analyses under a single approach. In this approach, individuals are permitted
to move freely within a matrix, among several states or conditions. Transitions can occur from
any state to any other state and in either direction. A ready example is the geographic one,
where movement can literally be among all “states,” but statistically speaking, movement can
be as readily from employment to unemployment or from marriage to nonmarriage. The highly
sophisticated mathematical equipment already developed in the matrix field greatly expands the
potential for analysis of these events [Ross, 1982, p. 424].

This section considers an illustration in which the “migration” of the population is between four “regions” of
existence: single, married, widowed, and divorced.

According to Table 4.5, the female population of Sweden increased by 14,446 people during 1974. Starting
the year with a total of 4,098,535 women, the population experienced 53,200 births of baby girls and 38,754
female deaths during the ensuing year (international migration is ignored in this illustration). Thus, the total
at the end of the year stood at 4,112,981 persons. Expressed in crude birth and death rates, we have that

P (1975) = (1 + b− d)P (1974) (4.19)
= (1 + r)P (1974)
= (1 + 0.003525)4, 098, 535
= 4, 112, 981
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TABLE 4.5 Patterns of Marital Status Change, Females, Sweden, 1974
From/To Single Married Widowed Divorced Deaths Births Population
Single – 37,768 – – 7,562 15,257 1,659,430
Married – – 24,961 27,966 11,847 36,519 1,890,436
Widowed – 399 – – 17,797 119 385,070
Divorced – 6,342 – – 1,548 1,305 163,599

Total 38,754 53,200 4,098,535
SOURCE: Appendix B

During the year, 97,436 women, 2.38% of the female population, changed their marital status (Table 4.5)
with marriages accounting for 45.68% of the changes, widowhoods for 25.62%, and divorces for 28.70%. First
marriages amounted to 84.85% of the total number of marriages.

The data in Table 4.5 may be expressed in the form of the matrix projection model defined in Chapter 2.
Instead of migrations between regions, we have movements between states. The accounting equations now
assert that the population in each marital state at the end of the year is equal to the population at the start
of the year, minus deaths and movements out of the state, plus movements into the state. In the case of the
single (never-married) population, Ps(t) say, there is also the increment due to births. For example,

Ps(1975) = (1, 659, 430− 7, 562− 37, 768 + 15, 257) + 36, 519 + 119 + 1, 305 = 1, 667, 300

which expressed in rates is

Ps(1975) = (1− 0.004557− 0.022760 + 0.009194)1, 659, 430
+ 0.019318(1, 890, 436) + 0.000309(385, 070)
+ 0.007977(163, 599)

= 1, 667, 300

Collecting the four subpopulations into a vector (t), we may define the familiar matrix projection model:

P(t+ 1) = GP(t) (4.20)
or 

1, 667, 300
1, 870, 171
391, 835
183, 675

 =


0.981878 0.019318 0.000309 0.007977
0.022760 0.965736 0.001036 0.038766

0 0.013204 0.952746 0
0 0.014793 0 0.951772




1, 659, 430
1, 890, 436
385, 070
163, 599


Classifying the Swedish female population by marital status is a useful form of disaggregation because it
illuminates patterns of marital status change. Classifying the same population by residential status identifies
patterns of spatial redistribution. For example, in 1974 766,565 of the 4,098,535 Swedish women lived in
Stockholm, the capital city (Appendix B). Among these 14,726 migrated to the rest of Sweden during the
year and 12,858 migrated in the reverse direction. The Stockholm population experienced 6,640 deaths and
9,991 births; the corresponding totals for the rest of Sweden were 32,114 and 43,209, respectively. Thus, the
following biregional projection model describes population redistribution during that period:

[
768, 048

3, 344, 933

]
=
[
0.985161 0.003859
0.019210 0.999471

] [
766, 565

3, 331, 970

]
Combining the classification by marital status with that of location gives rise to eight states and an 8 by 8
projection matrix. The reader should use the data in Appendix B to create such a multistate model.
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All of the preceding has ignored age. Incorporation of that added dimension into the analysis is straightforward
and follows the procedures developed earlier in this chapter. Tables 4.6 and 4.7 set out the resulting
projections to the year 2000. Note the aggregation bias that is introduced by the alternative consolidations of
the full eight-state age-disaggregated model.

TABLE 4.6 Multistate Population Projections (in thousands); Sweden, Females, 1974-2004-Stability
Population Projection

1-State 2-States 4-States
Sweden Sweden Never Sweden

Variable Total Stockholm R. Sweden Total Married Married Widowed Divorced Total
1974
Population 4,099 767 3,332 4,099 1,659 1,890 385 164 4,099
Mean age 38.6 38.2 38.7 38.6 20.5 47.0 70.5 49.7 38.6
Share 100.0 18.7 81.3 100.0 40.5 46.1 9.4 4.0 100.0

2004
Population 4,120 740 3,381 4,121 1,659 1,528 417 434 4,038
Mean age 41.1 41.5 41.0 41.1 23.8 48.5 73.8 54.8 41.6
Share 100.0 18.0 82.0 100.0 41.1 37.8 10.3 10.7 100.0
Growth rate -0.0014 -0.0028 -0.0011 -0.0014 0.0001 -0.0067 -0.0085 0.0088 -0.0024

Stable
Mean age 41.8 43.0 42.8 42.8 30.3 48.6 73.7 58.7 44.2
Share 100.0 17.1 82.9 100.0 43.7 34.9 9.5 11.9 100.0
Growth rate -0.0016 – -0.0041 – – – -0.0064 – –

SOURCE: Rogers and Planck (1984).

TABLE 4.7 Multistate Population Projections (in thousands); Sweden, Females, 1974-2004-Stability
8-State Population Projection

Stockholm Rest of Sweden
Never Never Sweden

Variable Married Married Widowed Divorced Married Married Widowed Divorced Total
1974
Population 304 364 68 31 1,355 1,527 317 132 4,099
Mean age 20.6 46.0 70.2 48.8 20.5 47.2 70.6 49.9 38.6
Share 7.4 8.9 1.7 0.8 33.1 37.3 7.7 3.2 100.0

2004
Population 282 260 72 114 1,379 1,274 346 313 4,041
Mean age 24.2 47.4 74.1 53.5 23.7 48.7 73.7 55.4 41.6
Share 7.0 6.4 1.8 2.8 34.1 31.5 8.6 7.8 100.0
Growth rate -0.0016 -0.0087 -0.0125 0.0086 0.0007 -0.0061 -0.0075 0.0086 -0.0023

Stable
Mean age 29.9 47.2 73.5 57.6 30.2 48.9 73.7 59.1 44.1
Share 7.0 5.7 1.5 3.0 36.7 29.4 8.1 8.6 100.0
Growth rate – – – – -0.0063 – – – –

SOURCE: Rogers and Planck (1984).

4.6 Multiregional/Multistate Demography: A New Perspective
A number of pressing national and regional population issues arise as a consequence of unanticipated patterns
of change in the age composition, spatial distribution, and group status of population stocks. These changes
generally evolve slowly, but their effects are widely felt, and the problems they bring in their wake typically
are lasting and complex. Public awareness and public action are slow in coming, and all too often both are
stimulated by an inadequate understanding of the processes generating the patterns of change.

Demographers have addressed these issues and have sought to understand the associated underlying processes,
but their analytical apparatus has been inadequate. A particular shortcoming of this apparatus has been its
central focus on the evolution of a single population as it develops over time, while being exposed to sex- and
age-specific rates of events, such as births and deaths (Long, 1981). Such a unistate perspective of population
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growth and change is ill-equipped to examine the evolution of a system of interacting populations that are
linked by gross flows between various states of existence

This last chapter has outlined a multiregional/multistate model of population growth and change. In addition
to events such as births and deaths, this perspective focuses on gross flows and on multiple interacting
populations. It uses these as numerators and denominators, respectively, to define rates of occurrence that
refer to populations exposed to the possibility of experiencing such occurrences, that is, occurrence/exposure
rates.

Two important consequences follow. First, the multiregional/ multistate approach avoids potential inconsis-
tencies arising from inappropriately defined rates. Second, it allows one to follow individuals across several
changes of states of existence, thereby permitting the disaggregation of current or future population stocks
and flows by previous states of existence.

A focus on occurrences of events and transfers, and their association with the populations that are exposed
to the risk of experiencing them, enhances our understanding of, for example, patterns of fertility, mortality,
and migration. By not permitting such an association, the unistate approach can produce undesirable biases.

Heterogeneous populations contain subgroups for which demographic behavior is diverse. To the extent that
these diverse behaviors can be incorporated in a formal analysis, illumination of the aggregate patterns is
enhanced. For instance, our understanding of marital dissolution is enriched by information on the degree
to which divorces occur among those previously divorced. In generating such information, multiregional/
multistate analysis can identify, for example, how much of the current increase in levels of divorce in many
countries can be attributed to “repeaters” as opposed to “first-timers.”

Multiregional/multistate demography is a young branch of formal demography, and its potential contributions
are only now coming to be recognized. Further progress in the field will depend on the availability of the
necessary disaggregated data for carrying out the analyses and projections that would promote its further
development and acceptance.
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APPENDIX A: Demographic Data for India

URBAN REGION
Observed rates (per1000)

Age Population Births Deaths Outmig. Birth Death Outmig.
0 14,140,200 540,830 131,860 38.248 9.325
5 14,798,300 58,278 98,442 3.938 6.652
10 13,637,500 23,598 70,661 1.730 5.181
15 10,944,900 361,195 20,245 151,924 33.001 1.850 13.881
20 10,454,900 923,207 29,320 253,459 88.304 2.804 24.243
25 8,955,700 805,956 24,581 109,872 89.994 2.745 12.268
30 7,612,400 580,051 23,620 63,759 76.198 3.103 8.376
35 6,881,500 367,275 25,868 43,812 53.371 3.759 6.367
40 5,714,300 148,412 27,618 32,235 25.972 4.833 5.641
45 4,476,500 53,492 30,450 23,847 11.950 6.802 5.327
50 3,810,300 39,787 15,975 10.442 4.193
55 2,223,400 32,371 18,012 14.559 8.101
60 2,389,900 59,037 22,432 24.703 9.386
65 1,129,400 37,873 20,693 33.534 18.322
70+ 1,907,800 139,108 33,787 72.915 17.710

Total 109,077,000 3,239,588 1,112,584 1,090,770 29.700 10.200 10.000

RURAL REGION
Observed rates (per1000)

Age Population Births Deaths Outmig. Birth Death Outmig.
0 64,966,800 3,749,333 360,672 57.712 5.552
5 68,071,500 404,496 269,265 5.942 3.956
10 54,639,700 142,663 193,276 2.611 3.537
15 36,502,000 1,811,182 101,879 415,552 49.619 2.791 11.384
20 32,627,500 4,331,904 138,066 693,277 132.768 4.232 21.248
25 31,843,600 4,308,732 131,882 300,528 135.309 4.142 9.438
30 28,551,700 3,271,086 133,672 174,397 114.567 4.682 6.108
35 26,011,900 2,087,353 147,542 119,837 80.246 5.672 4.607
40 22,648,400 884,424 165,168 88,172 39.050 7.293 3.893
45 18,315,900 329,073 187,991 65,227 17.967 10.264 3.561
50 16,879,800 265,956 43,696 15.756 2.589
55 10,432,000 229,172 49,269 21.968 4.723
60 11,944,300 445,211 61,358 32.274 5.137
65 5,691,800 287,999 56,601 50.599 9.944
70+ 9,629,600 1,059,459 92,417 110.021 9.597

TOTAL 438,756,500 17,023,754 7,590,489 2,983,544 38.800 17.300 6.800

ALL OF INDIA
Observed rates (per1000)

Age Population Births Deaths Outmig. Birth Death Outmig.
0 79,107,000 4,290,163 492,532 54.232 6.226
5 82,869,800 462,774 367,707 5.584 4.437
10 68,277,200 166,261 263,937 2.435 3.866
15 47,466,900 2,172,377 122,124 567,476 45.785 2.574 11.960
20 43,082,400 5,255,111 167,386 946,736 121.978 3.885 21.975
25 40,799,300 5,114,688 156,463 410,400 125.362 3.835 10.059
30 36,164,100 3,851,137 157,292 238,156 106.491 4.349 6.585
35 32,893,400 2,454,628 173,410 163,649 74.624 5.272 4.975
40 28,362,700 1,032,836 192,786 120,407 36.415 6.797 4.245
45 22,792,400 382,565 218,441 89,074 16.785 9.584 3.908
50 20,690,100 305,743 59,671 14.777 2.884
55 12,655,400 261,543 67,281 20.667 5.316
60 14,334,200 504,248 83,790 35.178 5.845
65 6,821,200 325,872 77,294 47.773 11.331
70+ 11,537,400 1,198,567 126,204 103.885 10.939

TOTAL 547,833,500 20,263,342 8,703,073 4,074,314 36.988 15.886 7.437
SOURCE: Rogers(1982b)

67



APPENDIX B: Multistate Population Flows: Sweden, Females, 1974

To Stockholm Rest of Sweden

Never Never
From Married Married Widowed Divorced Married Married Widowed Divorced Deaths Births Population
Stockholm
Never married – 7,130 – – 7,648 352 – – 1,280 2,827 304,024
Married – – 4,408 9,312 – 5,748 50 48 2,123 6,858 363,581
Widowed – 74 – – – 0 395 – 2,966 25 67,847
Divorced – 1,238 – – – 63 – 422 271 281 31,113

Rest of Sweden
Never married 6,826 1,257 – – – 29,029 – – 6,282 12,430 1,355,406
Married – 3,744 206 169 – – 20,297 18,437 9,724 29,661 1,526,855
Widowed – 0 199 – – 325 – – 14,831 94 317,223
Divorced – 204 – 253 – 4,837 – – 1,277 1,024 132,486

Sweden total 38,754 53,200 4,098,535

SOURCE: Rogers and Planck (1984)

68



REFERENCES
Berelson, B. 1974. World population: status report 1974. Reports on Population/Family Planning, No. 15.
New York: The Population Council.

Coale, A. 1969. Population and economic development. In The population dilemma, ed. P. M. Hauser, 2nd
ed., pp. 59-84. Englewood Cliffs, NJ: Prentice-Hall.

Coale, A., and Demeny, P. 1966. Regional model life tables and stable populations. Princeton University
Press.

___. 1983. Regional model life tables and stable populations. 2nd ed. New York: Academic.

Frejka, T. 1973. The future of population growth: alternative paths to equilibrium. New York: John Wiley.

Keyfitz, N. 1971. Models. Demography 8(4): 571-80.

___. 1977. Applied mathematical demography. New York: John Wiley.

___. 1980. Do cities grow by natural increase or by migration? Geographical Analysis 12(2):142-56.

Keyfitz, N., and Beekman, J. A. 1984. Demography through problems. New York: Springer-Verlag.

Land, K., and Rogers, A., eds. 1982. Multidimensional mathematical demography. New York Academic.

Ledent, J. 1980. Rural-urban migration, urbanization, and economic development. Working Paper No. 80-19.
Laxenburg, Austria: International Institute for Applied Systems Analysis.

___and Rogers, A. 1979. Migration and urbanization in the Asian Pacific. Working Paper No. 79-51.
Laxenburg, Austria: International Institute for Applied Systems Analysis.

Littman, G., and Keyfitz, N. 1977. The next hundred years. Working Paper No.101 Cambridge Center for
Population Studies, Harvard University.

Long, J. F. Survey of federally produced national level projections. Review of Public Data Use 23: 712-22.

Philipov, D., and Rogers, A. 1981. Multistate population projections. IIASA Reports 4(1): 51-82.

Rogers, A. 1968. Matrix analysis of international population growth and distribution. Berkeley: University of
California Press.

___. 1971. Matrix methods in urban and regional analysis. San Francisco: Holden-Day.

___. 1975. Introduction to multiregional mathematical demography. New York: John Wiley.

___. 1978a. Model migration schedules: an application using data for the Soviet Union. Canadian Studies
in Population 5: 85-98.

___. 1978b. Migration, urbanization, resources, and development. In Alternatives for growth: the engineering
and economics of natural resources development, eds. H. McMains and L. Wilcox, pp. 149-217. Cambridge,
MA: Ballinger.

___. 1980. Introduction to multistate mathematical demography. Environment and Planning A 12(5):
489-98.

___. 1981. Projections of population growth and urbanization for five southeast Asian Pacific nations.
Working Paper No. 81-137. Laxenburg, Austria: International Institute for Applied Systems Analysis.

___. 1982a. Sources of urban population growth and urbanization, 1950-2000: a demographic accounting.
Economic Development and Cultural Change 30(3): 483-506.

___. 1982b. The migration component in subnational population projections. In National migration surveys,
survey manual X: guidelines for analysis, pp. 216-254. Bangkok: Economic and Social Commission for Asia
and the Pacific, United Nations.

___and Ledent, J. 1976. Increment-decrement life tables: a comment. Demography 13(2): 287-90.

69



Rogers, A., and Philipov, D. 1980. Multiregional methods for subnational population projections. Sistemi
Urbani 2(2/3): 151-70.

Rogers, A., and Planck, F. 1984. Parametrized multistate population projections. Working Paper No. 84-1.
Boulder: Population Program, Institute of Behavioral Science, University of Colorado.

Ross, J. A. 1982. Life tables. In International encyclopedia of population, ed. J. A. Ross. pp. 420-425. New
York: The Free Press.

United Nations. 1976. Global review of human settlements: a support paper for Habitat. Oxford: Pergamon.

___. 1980. Patterns of urban and rural population growth. Population Studies, No. 68. New York:
Department of International Economic and Social Affairs, United Nations.

___. 1981. World population prospects as assessed in 1980. Population Studies, No. 78. New York:
Department of International Economic and Social Affairs, United Nations.

___. 1984. Population projections: methodology of the United Nations. Population Studies No. 83. New
York: Department of International Economic and Social Affairs, United Nations.

United States Bureau of Labor Statistics. 1982. Tables of working life. Bulletin 2135. Washington, DC:
Department of Labor.

Willekens, F. 1979. Matrix models of aggregate multiregional population change: a comparison. International
Institute for Applied Systems Analysis, Laxenburg, Austria (unpublished paper).

Willekens, F., and Philipov, D. 1981 Dynamics of multiregional population systems: a mathematical analysis
of the growth path. Working Paper No. 81-75. Laxenburg, Austria: International Institute for Applied
Systems Analysis.

World Bank. 1979. World development report, 1979. New York: Oxford University Press.

___. 1983. Short-term population projection 1980-2020 and long-term projection 2000 to stationary state,
by age and sex for all countries of the world. Washington, DC: Policy and Research Unit, Population, Health
and Nutrition Department, World Bank.

70



ABOUT THE AUTHOR
ANDREI ROGERS is Professor of Geography and Director of the Population Program, Institute of Behavioral
Science at the University of Colorado, Boulder. Since obtaining his Ph.D. in city and regional planning at the
University of North Carolina, Chapel Hill, Rogers has also held faculty appointments in the Department of
City and Regional Planning at the University of California, Berkeley, and the Department of Civil Engineering
at Northwestern University, Evanston, Illinois. Before his move to Colorado, he spent eight years at the
International Institute for Applied Systems Analysis in Laxenburg, Austria, where he headed a research
program that addressed global human settlement issues and problems. He is the author of a number of
books on population analysis and is currently a member of the editorial boards of several journals in the
fields of population, planning, regional science, and mathematical biology. His current teaching and research
interests revolve around the quantitative analysis of global patterns of migration, urbanization, and economic
development.

71



SCIENTIFIC GEOGRAPHY SERIES
This series presents the contributions of scientific geography in small books or modules. Introductory modules
are designed to reduce learning barriers; successive volumes gradually increase in complexity, preparing the
reader for contemporary developments in this exciting field. Emphasizing practical utility and real -world
examples, this series of modules is intended for use as classroom texts and as reference books for researchers
and professionals.

Volume 1
CENTRAL PLACE THEORY by Leslie J King

Volume 2
GRAVITY AND SPATIAL INTERACTION MODELS by Kingsley E. Haynes & A. Stewart Fother-
ingham

Volume 3
INDUSTRIAL LOCATION by Michael J Webber

Volume 4
REGIONAL POPULATION PROJECTION MODELS by Andrei Rogers

Volume 5
SPATIAL TRANSPORTATION MOD ELING by Christian Werner

Volume 6
REGIONAL INPUT-OUTPUT ANALYSIS by Geoffrey J. D. Hewings

Volume 7
HUMAN MIGRATION by W.A.V. Clark

Volume 8
POINT PATTERN ANALYSIS by Barry N. Boots & Arthur Getis

Volume 9
SPATIAL AUTOCORRELATION by John Odland

Volume 10
SPATIAL DIFFUSION by Richard Morrill. Gary L. Gaile & Grant Ian Thrall

SAGE PUBLICATIONS
The Publishers of Professional Social Science
Newbury Park Beverly Hills London New Delhi

72


	Regional Population Projection Models
	Recommended Citation

	INTRODUCTION TO THE SCIENTIFIC GEOGRAPHY SERIES
	SERIES EDITOR'S INTRODUCTION
	ACKNOWLEDGMENTS
	INTRODUCTION
	Subnational Population Projection: Geographical Perspective
	Rates of Increase and Exponential Growth
	Alternative Projections of National Population Growth and Urbanization
	The Demographic Sources of Urban Growth
	Logistic Growth
	The Urban and Rural Population Projections of the United Nations

	SPATIAL POPULATION DYNAMICS: LOCATION WITHOUT AGE
	Urbanization in the Soviet Union
	Disaggregated Projections
	The Sources of Urban Growth Revisited
	The Matrix Projection Model and Stable Growth
	Population Redistribution in Belgium

	UNIREGIONAL POPULATION DYNAMICS: AGE WITHOUT LOCATION
	The Uniregional Projection Model
	The Life Table
	Urbanization in the Soviet Union Revisited
	Zero Population Growth
	The National and Global Population Projections of the United Nations

	MULTIREGIONAL POPULATION DYNAMICS: AGE AND LOCATION
	The Multiregional Projection Model
	Urbanization in India Revisited
	The Sources of Urban Growth Once Again
	Simulating the Urbanization Transition
	Multistate Projections of Sweden's Female Population
	Multiregional/Multistate Demography: A New Perspective 

	REFERENCES
	ABOUT THE AUTHOR

