6 research outputs found

    Validation of the procedure: Quantification of the degradation index of Photovoltaic Grid Connection Systems

    Get PDF
    The results obtained from the validation of the procedure ‟Quantification of the degradation index of Photovoltaic Grid Connection Systems” are presented, using statistical parameters, which corroborate its accuracy, achieving a coefficient of determination of 0.9896, a percentage of the root of the mean square of the error RMSPE = 1.498% and a percentage of the mean absolute error MAPE = 1.15%, evidencing the precision of the procedure

    Fault Diagnostic Methodology for Grid-Connected Photovoltaic Systems

    Get PDF
    This research focuses on the design of a fault diagnosis methodology to contribute to the improvement of efficiency, maintainability and availability indicators of Grid-Connected Photovoltaic Systems. To achieve this, we start from the study of the mathematical model of the photovoltaic generator, then, a procedure is performed to quantify the operational losses of the photovoltaic generator and adjust the mathematical model of this to the real conditions of the system, through a polynomial adjustment. A real system of nominal power 7.5 kWp installed in the Solar Energy Research Center of the province of Santiago de Cuba is used to evaluate the proposed methodology. Based on the results obtained, the proposed approach is validated to demonstrate that it successfully supervises the system. The methodology was able to detect and identify 100% of the simulated failures and the tests carried out had a maximum false alarm rate of 0.22%, evidencing its capacity

    Procedure for the quantification of the degradation index of Photovoltaic Generators

    Get PDF
    A procedure is presented for the quantification of the degradation index of Photovoltaic Generators, based on the quantification of the operational losses inherent in the system, which allows maintaining the nominal operating conditions and by the warranty terms of the photovoltaic generator. A photovoltaic generator connected to the network with a nominal power of 7.5 kWp, installed in the Solar Energy Research Center of Santiago de Cuba, is used to evaluate and validate the procedure. The starting point is the mathematical model of the photovoltaic generator, then the operational losses of the photovoltaic generator are quantified and the mathematical model is adjusted to real conditions, through a polynomial adjustment.  The results obtained show that the photovoltaic generator presents deviations in terms of the nominal power generation, because the operational losses are 7% with respect to the values ​​given by the manufacturer

    Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red

    Get PDF
    The aim of the present research work is the design of a methodology of fault diagnosis as a contribution to the improvement of indicators about efficiency, maintenance and availability of Photovoltaic Systems of Network Connection (PVSNC). The network connection inverter and the mathematical model of the Photovoltaic Generator were firstly analyzed. Afterwards, the existing operational losses of the Photovoltaic Generator were quantified, and the mathematical model was adapted to the real conditions of the System through a polynomial adjustment. A real network connection system of nominal power 7.5 kWp installed at the Research Center of Solar Energy, in the province of Santiago de Cuba, was used to assess the proposed methodology. The results obtained were validated to show that the proposed design successfully supervises the PVSNC.100% of the simulated faults were detected and identified with the designed methodology, whose usefulness was additionally shown when having a maximum rate of 0.22% of false alarm in all the tests done.Esta investigación tiene como objetivo el diseño de una metodología de diagnóstico de fallos para contribuir al mejoramiento de los indicadores de eficiencia, mantenimiento y disponibilidad de los Sistemas Fotovoltaicos de Conexión a Red (SFVCR). Para lograr dicho objetivo, se realiza el estudio del inversor de conexión a red y del modelo matemático del generador fotovoltaico. Luego se cuantifican las pérdidas operacionales del generador fotovoltaico y se adapta el modelo matemático de éste a las condiciones reales del sistema a través de un ajuste polinomial. Un sistema real de conexión a red de potencia nominal 7.5 kWp, instalado en el Centro de Investigaciones de Energía Solar (CIES) en la provincia Santiago de Cuba, se utiliza para evaluar la metodología propuesta. Con los resultados obtenidos se valida el diseño propuesto para demostrar que éste supervisa con éxito el SFVCR. La metodología fue capaz de detectar e identificar el 100 % de los fallos simulados y los ensayos realizados tuvieron como máximo una tasa de falsa alarma de 0.22 %, evidenciándose su utilidad
    corecore