27 research outputs found

    Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Get PDF
    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data

    Key sustainability issues and the spatial classification of sensitive regions in Europe

    Get PDF
    Cross-cutting environmental, social and economic changes may have harsh impacts on sensitive regions. To address sustainability issues by governmental policy measures properly, the geographical delineation of sensitive regions is essential. With reference to the European impact assessment guidelines from 2005, sensitive regions were identified by using environmental, social and economic data and by applying cluster analysis, United Nation Environmental Policy priorities and expert knowledge. On a regionalised ‘Nomenclature of Territorial Units for Statistics’ (NUTS) level and for pre-defined sensitive region types (post-industrial zones, mountains, coasts and islands) 31 % of the European area was identified as sensitive. However, the delineation mainly referred to social and economic issues since the regional data bases on environmental indicators are limited and do not allow the separation of medium-term vital classes of sensitive regions. Overall, the sensitive regions showed indicator values differing from the EU- 25 average.peer-reviewe

    Key sustainability issues and the spatial classification of sensitive regions in Europe

    Get PDF
    Severe and cross-cutting environmental, social and economic changes have particular impact in sensitive regions and the geographical delineation of sensitive regions is essential to address sustainability issues by policy measures. Based on the European impact assessment guidelines from 2005, sensitive regions were identified using cluster analysis, UNEP priorities and expert knowledge. On a regionalised NUTS level and for pre-defined sensitive region types (post-industrial zones, mountains, coasts and islands) 31 % of Europe’s area was identified as sensitive. However, the delineation mainly referred mainly to social and economic issues since the regionalised data base on environmental indicators and including issues on soil quality is limited and does not allow the separation of medium-term vital clusters. Some visions on short-term and long-term perspectives will be discussed to ensure sustainable development in sensitive regions.peer-reviewe

    Reduction of Uncorrelated Striping Noise—Applications for Hyperspectral Pushbroom Acquisitions

    No full text
    Hyperspectral images are of increasing importance in remote sensing applications. Imaging spectrometers provide semi-continuous spectra that can be used for physics based surface cover material identification and quantification. Preceding radiometric calibrations serve as a basis for the transformation of measured signals into physics based units such as radiance. Pushbroom sensors collect incident radiation by at least one detector array utilizing the photoelectric effect. Temporal variations of the detector characteristics that differ with foregoing radiometric calibration cause visually perceptible along-track stripes in the at-sensor radiance data that aggravate succeeding image-based analyses. Especially, variations of the thermally induced dark current dominate and have to be reduced. In this work, a new approach is presented that efficiently reduces dark current related stripe noise. It integrates an across-effect gradient minimization principle. The performance has been evaluated using artificially degraded whiskbroom (reference) and real pushbroom acquisitions from EO-1 Hyperion and AISA DUAL that are significantly covered by stripe noise. A set of quality indicators has been used for the accuracy assessment. They clearly show that the new approach outperforms a limited set of tested state-of-the-art approaches and achieves a very high accuracy related to ground-truth for selected tests. It may substitute recent algorithms in the Reduction of Miscalibration Effects (ROME) framework that is broadly used to reduce radiometric miscalibrations of pushbroom data takes

    EnGeoMAP 2.0—Automated Hyperspectral Mineral Identification for the German EnMAP Space Mission

    No full text
    Algorithms for a rapid analysis of hyperspectral data are becoming more and more important with planned next generation spaceborne hyperspectral missions such as the Environmental Mapping and Analysis Program (EnMAP) and the Japanese Hyperspectral Imager Suite (HISUI), together with an ever growing pool of hyperspectral airborne data. The here presented EnGeoMAP 2.0 algorithm is an automated system for material characterization from imaging spectroscopy data, which builds on the theoretical framework of the Tetracorder and MICA (Material Identification and Characterization Algorithm) of the United States Geological Survey and of EnGeoMAP 1.0 from 2013. EnGeoMAP 2.0 includes automated absorption feature extraction, spatio-spectral gradient calculation and mineral anomaly detection. The usage of EnGeoMAP 2.0 is demonstrated at the mineral deposit sites of Rodalquilar (SE-Spain) and Haib River (S-Namibia) using HyMAP and simulated EnMAP data. Results from Hyperion data are presented as supplementary information

    Assessment of Red-Edge Position Extraction Techniques: A Case Study for Norway Spruce Forests Using HyMap and Simulated Sentinel-2 Data

    No full text
    Systematic quantification and monitoring of forest biophysical and biochemical variables is required to assess the response of ecosystems to climate change and gain a deeper understanding of the carbon cycle. Red-Edge Position (REP) is a hyperspectrally detectable parameter, which is sensitive to Chlorophyll (Chl) content. In the current study, REP was modelled for Norway spruce Forest canopy Reflectance and Transmittance (FRT) using Radiative Transfer Modelling (RTM) (resampled to HyMap and Sentinel-2 spectral resolution) as well as calculated from the real HyMap and simulated Sentinel-2 image data. Different REP extraction methods (PF, LE, 4PLI and its optimized versions for HyMap and Sentinel-2 spectral resolution) were assessed. The lowest differences in REP values calculated from image-extracted spectra and from the theoretical RTM simulations were found for the 4PLI method including its HyMap and Sentinel-2 optimized versions (4PLIH and 4PLIS). Despite its simplicity, the 4PLI REP extraction technique demonstrated its potential usefulness for estimating canopy chlorophyll (Chl × LAI) content using both airborne hyperspectral (HyMap) data as well as space-borne Sentinel-2 image data

    Translational Imaging Spectroscopy for Proximal Sensing

    No full text
    Proximal sensing as the near field counterpart of remote sensing offers a broad variety of applications. Imaging spectroscopy in general and translational laboratory imaging spectroscopy in particular can be utilized for a variety of different research topics. Geoscientific applications require a precise pre-processing of hyperspectral data cubes to retrieve at-surface reflectance in order to conduct spectral feature-based comparison of unknown sample spectra to known library spectra. A new pre-processing chain called GeoMAP-Trans for at-surface reflectance retrieval is proposed here as an analogue to other algorithms published by the team of authors. It consists of a radiometric, a geometric and a spectral module. Each module consists of several processing steps that are described in detail. The processing chain was adapted to the broadly used HySPEX VNIR/SWIR imaging spectrometer system and tested using geological mineral samples. The performance was subjectively and objectively evaluated using standard artificial image quality metrics and comparative measurements of mineral and Lambertian diffuser standards with standard field and laboratory spectrometers. The proposed algorithm provides highly qualitative results, offers broad applicability through its generic design and might be the first one of its kind to be published. A high radiometric accuracy is achieved by the incorporation of the Reduction of Miscalibration Effects (ROME) framework. The geometric accuracy is higher than 1 μpixel. The critical spectral accuracy was relatively estimated by comparing spectra of standard field spectrometers to those from HySPEX for a Lambertian diffuser. The achieved spectral accuracy is better than 0.02% for the full spectrum and better than 98% for the absorption features. It was empirically shown that point and imaging spectrometers provide different results for non-Lambertian samples due to their different sensing principles, adjacency scattering impacts on the signal and anisotropic surface reflection properties

    Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2

    No full text
    Remote sensing analysis is a crucial tool for monitoring the extent of mine waste surfaces and their mineralogy in countries with a long mining history, such as South Africa, where gold and platinum have been produced for over 90 years. These mine waste sites have the potential to contain problematic trace element species (e.g., U, Pb, Cr). In our research, we aim to combine the mapping and monitoring capacities of multispectral and hyperspectral spaceborne sensors. This is done to assess the potential of existing multispectral and hyperspectral spaceborne sensors (OLI and Hyperion) and future missions, such as Sentinel-2 and EnMAP (Environmental Mapping and Analysis Program), for mapping the spatial extent of these mine waste surfaces. For this task we propose a new index, termed the iron feature depth (IFD), derived from Landsat-8 OLI data to map the 900-nm absorption feature as a potential proxy for monitoring the spatial extent of mine waste. OLI was chosen, because it represents the most suitable sensor to map the IFD over large areas in a multi-temporal manner due to its spectral band layout; its (183 km × 170 km) scene size and its revisiting time of 16 days. The IFD is in good agreement with primary and secondary iron-bearing minerals mapped by the Material Identification and Characterization Algorithm (MICA) from EO-1 Hyperion data and illustrates that a combination of hyperspectral data (EnMAP) for mineral identification with multispectral data (Sentinel-2) for repetitive area-wide mapping and monitoring of the IFD as mine waste proxy is a promising application for future spaceborne sensors. A maximum, absolute model error is used to assess the ability of existing and future multispectral sensors to characterize mine waste via its 900-nm iron absorption feature. The following sensor-signal similarity ranking can be established for spectra from gold mining material: EnMAP 100% similarity to the reference, ALI 97.5%, Sentinel-2 97%, OLI and ASTER 95% and ETM+ 91% similarity
    corecore