86 research outputs found
Areas of natural occurrence of melipona scutellaris Latreille, 1811(Hymenoptera: Apidae) in the state of Bahia, Brazil.
The bee Melipona scutellaris is considered the reared meliponine species with the largest distribution in the North and Northeast regions of Brazil, with records from the state of Rio Grande do Norte down to the state of Bahia. Considering the importance of this species in the generation of income for family agriculture and in the preservation of areas with natural vegetation, this study aimed at providing knowledge on the distribution of natural colonies of M. scutellaris in the state of Bahia. Literature information, interviews with stinglessbee beekeepers, and expeditions were conducted to confirm the natural occurrence of the species. A total of 102 municipalities showed records for M. scutellaris, whose occurrence was observed in areas ranging from sea level up to 1,200-meter height. The occurrence of this species in the state of Bahia is considered to be restricted to municipalities on the coastal area and the Chapada Diamantina with its rainforests. Geographic coordinates, elevation, climate and vegetation data were obtained, which allowed a map to be prepared for the area of occurrence in order to support conservation and management policies for the species
Use of DNA technology in forensic dentistry
The established importance of Forensic Dentistry for human identification, mainly when there is little remaining material to perform such identification (e.g., in fires, explosions, decomposing bodies or skeletonized bodies), has led dentists working with forensic investigation to become more familiar with the new molecular biology techniques. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article presents a literature review referring to the main studies on Forensic Dentistry that involve the use of DNA for human identification, and makes an overview of the evolution of this technology in the last years, highlighting the importance of molecular biology in forensic sciences
Avaliação de genótipos de arroz sob efeito do ácido butírico
Solos do tipo hidromórfico apresentam uma reduzida capacidade de drenagem, sendo utilizados principalmente para cultivo de arroz irrigado. Esta condição favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas. O objetivo do trabalho foi avaliar a resposta de 25 genótipos de arroz ao ácido butírico, um composto produzido em solos de deficiente drenagem e alto teor de matéria orgânica. O trabalho foi executado em sistema de hidroponia com 4 doses do ácido e o delineamento utilizado foi blocos casualizados com 3 repetições em um esquema fatorial. As variáveis mensuradas foram comprimento de raízes (CR) e de parte aérea (CPA), número de raízes (NR) e matéria seca de raízes (MSR) e parte aérea (MSPA). Foram procedidas análise de variância, desempenho relativo e ajuste de regressões. Os efeitos para genótipos e doses de ácido butírico foram todos significativos. Apenas os efeitos de interação entre doses x genótipos para as variáveis CR e MSR revelaram significância. A variável CR foi a mais afetada pelo ácido e as regressões estabelecidas para essa variável revelaram 9 genótipos tolerantes e 16 sensíveis ao efeito fitototoxico do ácido butírico. Genótipos desenvolvidos para sistema de irrigação por inundação se mostraram mais tolerantes ao ácido
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Statement of Second Brazilian Congress of Mechanical Ventilarion : part I
Resumo não disponíve
- …