671 research outputs found

    Evidence for regions of negligible cosmic-ray modulation in the inner heliosphere ( 10 AU)

    Get PDF
    Gold and Venkatesan report observations of periods during 1974-1976 when extended regions of heliolongitude that emitted lower than average solar wind velocities at 1 AU also exhibited higher than average cosmic ray intensities as measured by the E 35 MeV CPME anti-coincidence scintillator (28 sq cm omnidirectional geometric factor) on IMP-8. Their observations reproduced by a simple model, based on the observed steady solar wind structure, wherein there is little modulation of cosmic rays in the inner heliosphere until they reach the shocked plasma beyond the stream interactions in the outer heliosphere (similar to 5 to 10 AU). Beyond the interaction boundary, the intensity exhibits a constant radial gradient (similar to 2%/AU). The model also offers an explanation for the irregular behavior of the rotation averaged radial gradients observed by inside 10 AU, as well as the significant, but often ephemeral, latitude gradients observed by Voyagers 1 and 2 and IMP-8

    An investigation of the structure and kinematics of the spiral galaxy NGC 6503

    Get PDF
    The spiral galaxy NGC 6503 exhibits a regular kinematical structure except for a remarkable drop of the stellar velocity dispersion values in the central region. To investigate the dynamics of the disc a theoretical framework has been described. This includes a mass decomposition of the galaxy into a family of disc/halo realizations compatible with the observed photometry and rotation curve. For this family stellar velocity dispersion values and stability parameters were calculated, showing that the more massive discs, although having larger dispersions, are less stable. However, a reliable theoretical description of the inner regions where the drop occurs cannot be given. That is why we have resorted to numerical calculations. Pure stellar 3d simulations have been performed for the family of decompositions. A clear result is that disc/dark halo mass ratios approaching those of the maximum disc limit generate a large bar structure. This is incompatible with the observed morphology of NGC 6503. For the larger radii the stellar kinematics resulting from the simulations essentially agrees with that predicted by the theory, but the central velocity dispersion drop could not be reproduced. A close inspection reveals that the central nuclear region is very small and bright. Therefore, tentatively, this nucleus was considered as an isothermal sphere and a core fitting procedure was applied. For an adopted equal mass-to-light ratio of disc and nucleus, a velocity dispersion of 21.5 km/s is predicted, in excellent agreement with the observed central value. The observed dispersion drop can thus be explained by a separate kinematically distinct galactic component.Comment: 14 pages, Latex, use mn.sty style fil

    Coronal magnetic structure and the latitude and longitude distribution of energetic particles, 1-5 AU

    Get PDF
    The relation of the coronal magnetic field structure to the distribution of approximately 1 MeV protons in interplanetary space between 1 and 5 AU is discussed. After ordering the interplanetary data by its estimated coronal emission source location in heliographic coordinates, the multispacecraft measured proton fluxes are compared with coronal magnetic field structure infrared as observed in soft X-ray photographs and potential field calculations. Evidence for the propagation and possible acceleration of solar flare protons on high magnetic loop structure in the corona is presented. Further, it is shown that corotating proton flux enhancements are associated with regions of low coronal X-ray emission (including coronal holes), usually in association with solar wind stream structure

    Spatial variation of iron abundance in the high speed solar wind, 1972 to 1976

    Get PDF
    The Fe/H ratios in the peaks of high speed streams (HSS) during the decline of Solar Cycle 20 and the following minimum (October 1972-December 1976) were analyzed. The response of the 50-200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 to solar wind iron ions at high solar wind speeds and Fe measurements were compared with solar wind H and He parameters from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ratio in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 10(-5), abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS. Over the period 1973-1976, a steady decrease in the average quiet-time Fe/H ratio by a factor of about 4 is measured on both IMP-7 and 8

    Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    Get PDF
    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS

    Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs)

    Get PDF
    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases

    Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    Get PDF
    Previous studies at lower energies have shown that the cosmic ray density gradients vary in space and time, and many authors currently are suggesting that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the Sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. With this in mind, the anisotropy measurements made by the UCSD Cerenkov detectors on Pioneers 10 and 11 are studied. It is shown that the local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU

    Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    Get PDF
    Two cosmic rays which pass through the same point going in opposite directions will, in the absence of scattering and inhomogeneities in the magnetic field, trace helices about adjacent flux tubes, whose centerlines are separated by one gyrodiameter. A directional anisotropy at the point suggests a difference in the number of cosmic rays loading the two flux tubes; that is, a density gradient over the baseline of a gyrodiameter. Previous studies at lower energies have shown that the cosmic ray density gradients vary in time and space. It is suggested that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. Anisotropic measurements made by Cerenkov detectors on Pioneers 10 and 11 were studied. It was found that local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU

    Interplanetary MeV electrons of Jovian origin

    Get PDF
    Observations of low energy electron increases observed in interplanetary space on Pioneer 10 are reported as it approached Jupiter. These discrete bursts were several hundred times the normal quiet-time electron flux, and became more frequent as one approached Jupiter resulting in the quasi-continuous presence of large fluxes of these electrons in interplanetary space. It is noted that the integrated flux from quiet-time electrons is comparable to the integrated ambient electron flux itself. In addition, the spectrum of electrons observed in Jupiter's magnetosphere, on Pioneer 10 in interplanetary space near Jupiter, for the quiet-time increases near the earth, and for the ambient electron spectrum are all remarkably similar. These two lines of evidence suggest the possibility that Jupiter could be the source of most of the ambient electrons at low energies

    "Counting Your Customers": When will they buy next? An empirical validation of probabilistic customer base analysis models based on purchase timing

    Get PDF
    This research provides a new way to validate and compare buy-till-you-defect [BTYD] models. These models specify a customer’s transaction and defection processes in a non-contractual setting. They are typically used to identify active customers in a com- pany’s customer base and to predict the number of purchases. Surprisingly, the literature shows that models with quite different assumptions tend to have a similar predictive performance. We show that BTYD models can also be used to predict the timing of the next purchase. Such predictions are managerially relevant as they enable managers to choose appropriate promotion strategies to improve revenues. Moreover, the predictive performance on the purchase timing can be more informative on the relative quality of BTYD models. For each of the established models, we discuss the prediction of the purchase timing. Next, we compare these models across three datasets on the predictive performance on the purchase timing as well as purchase frequency. We show that while the Pareto/NBD and its Hierarchical Bayes extension [HB] models perform the best in predicting transaction frequency, the PDO and HB models predict transaction timing more accurately. Furthermore, we find that differences in a model’s predictive performance across datasets can be explained by the correlation between behavioral parameters and the proportion of customers without repeat purchases
    • …
    corecore