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“Counting Your Customers”: When will they
buy next?

An empirical validation of probabilistic customer base analysis models based on
purchase timing

E. Korkmaz, R. Kuik, D. Fok

This research provides a new way to validate and compare buy-till-you-defect [BTYD]
models. These models specify a customer’s transaction and defection processes in a
non-contractual setting. They are typically used to identify active customers in a com-
pany’s customer base and to predict the number of purchases. Surprisingly, the literature
shows that models with quite different assumptions tend to have a similar predictive
performance.

We show that BTYD models can also be used to predict the timing of the next purchase.
Such predictions are managerially relevant as they enable managers to choose appropriate
promotion strategies to improve revenues. Moreover, the predictive performance on the
purchase timing can be more informative on the relative quality of BTYD models.

For each of the established models, we discuss the prediction of the purchase timing.
Next, we compare these models across three datasets on the predictive performance on
the purchase timing as well as purchase frequency.

We show that while the Pareto/NBD and its Hierarchical Bayes extension [HB] models
perform the best in predicting transaction frequency, the PDO and HB models predict
transaction timing more accurately. Furthermore, we find that differences in a model’s
predictive performance across datasets can be explained by the correlation between

behavioral parameters and the proportion of customers without repeat purchases.

Keywords: Buy-till-you-defect models, purchase timing, Bayesian estimation, customer base analysis,

probability models.



1 Introduction

Many firms routinely store data on customer transactions. However, processing this data in order
to provide managerially relevant information can still be a challenge. The customer base analysis
literature provides a number of methods to use such data to gain a good understanding of the cus-
tomer’s transaction behavior. In the literature, a distinction is made between a contractual and a
noncontractual setting. The latter is especially challenging as one does not observe the moment at
which a customer leaves the company. In this setting, it is interesting to predict the number of future
purchases, and to infer from observed behavior whether a customer has already left the company. A
wide variety of models is available for these purposes.

The online retail industry is an important example of an industry operating in a noncontractual
setting. Retailers never know which customers are active, or in other words, which customers will con-
tinue to buy from the firm. Thus, the customer database of an online retailer is likely to contain many
inactive customers. For example, in October 2005, eBAY reported 168 million registered customers but
only 68 million of them were counted as active by the company (Gupta et al.|2006). It is, therefore, very
useful to develop a method to identify active customers under a noncontractual setting.

It has been widely recognized in the literature that models that ignore defection, like the early NBD
model by Ehrenberg (1988), do not provide good predictions for this type of industry. They generally
overestimate future transaction frequencies (Schmittlein and Peterson|{1994). Schmittlein, Morrison,
and Colombo (1987) proposed the first model that does account for defection. Since then, there has
been a strong focus on the so-called buy-till-you-defect [BTYD] model. Several extensions of the model
by Schmittlein, Morrison, and Colombo (1987) have been introduced (Fader, Hardie, and Lee[2005a,
Abe2009aland Jerath, Fader, and Hardie 2011). Some of these models have also been used to generate
managerially relevant insights (Reinartz and Kumar [2000, Reinartz and Kumar 2003}, and Wiibben
and Wangenheim [2008). However, little attention has been paid to providing a rigorous empirical
comparison of the growing number of BTYD models. The models have mainly been compared on their
performance in predicting a customer’s number of purchases in a time interval.

In this paper, we suggest to include another measure in the comparison, namely the timing of the
purchases. The existing models mainly differ in the distribution that governs the defection process.
However, differences in the shape of this distribution may not directly lead to substantial differences
in the expected number of purchases. Other measures, such as the customer being active at the end of

the observation interval, directly involve the (unobserved) time of defection. If we want to use such



measures for validation, we require additional assumptions or heuristics. The timing of the purchase
is, however, observed and critically depends on the interplay between its transaction and defection
processes. Yet, predicting the timing of the next purchase is not straightforward. We develop methods
for all state-of-the-art BTYD models. Based on these predictions, we provide an extensive empirical
validation and comparison of these models where we go beyond the typical comparison that mainly
considers purchase frequency.

We present the in-sample and out-of-sample performance on predicting the transaction frequency
and the transaction timing of each customer for three datasets. The first dataset is from an online
grocer in the Netherlands. The second is the well-known CDNOW dataset which has been commonly
used as a benchmark set. The third dataset is also used by Batislam, Denizel, and Filiztekin (2007), and
Jerath, Fader, and Hardie (2011) and is from a Turkish grocery retailer.

Our results show that different models can lead to different predictions on timing and frequency. It is
important to understand how the underlying behavioral assumptions of the models lead to differences
in performance. It turns out that certain data characteristics favor use of certain models.

The remainder of this paper is structured as follows. Section [2|gives an overview of the existing
literature on BTYD models. We discuss the main features of and differences across the models, and
present our contribution in more detail. In Section[3} we provide technical details of the considered
models and present new results that deal with the timing of transactions. Section[4|gives a detailed
description of the datasets. After presenting results of the empirical study in Section |5, general

conclusions are discussed in Section[6

2 BTYD Models

In this section, we briefly compare the main ideas underlying the BTYD models. We also discuss the
similarities and differences across these models. Next, we review earlier empirical validation studies.
Table[1]gives a summary of the related empirical work. We omit from this table studies that employ
the Pareto/NBD model without testing its predictive performance in a holdout period (Reinartz and
Kumar 2000, Reinartz and Kumar 2003/and Wu and Chen [2000). Finally, we discuss lifetime estimation

using the models.



2.1 Models in comparison

The Pareto/Negative Binomial Distribution (Pareto/NBD) model (Schmittlein, Morrison, and Colombo
1987) is the first model that includes the customer’s defection process. This model assumes that,
while alive, customers make purchases according to a Poisson process with heterogeneous rates.
The lifetime of a customer is modeled using an exponential distribution, also with a heterogeneous
rate. The individual-specific rates of both processes are next treated as random effects and modeled
using independent gamma distributions. This model allows for individual-level calculations on the
probability of being active and the number of future purchases. The structure of the model leads
to closed-form expressions for such predictions given the (hyper)parameters of the heterogeneity
distributions. This feature has made this model useful for today’s personalized marketing concepts
such as direct marketing, one-to-one marketing and customer relation management.

Three important extensions of the Pareto/NBD model have been introduced in the literature. Fader,
Hardie, and Lee (2005a) suggested replacing the continuous time defection process by a discrete
time process. After each purchase, the customer defects with an individual-specific probability. The
resulting model is called a Beta-Geometric/Negative Binomial Distribution (BG/NBD) model. The
disadvantage of this model is that frequent purchasers have more “opportunities” to defect. In some
cases this may not correspond to reality. To solve this problem, Jerath, Fader, and Hardie (2011)
introduced the Periodic-Death-Opportunity (PDO) model. This model is very similar to the BG/NBD,
but defection opportunities are defined in calendar time. In other words, defection can only occur at
certain time intervals, independent of the transaction timing.

Another extension of the Pareto/NBD model deals with the relation between the purchase rate and
the defection rate. In the Pareto/NBD model, and in the above-mentioned extensions, these rates are
assumed to be independent. In practice, this assumption may be violated as, for example, frequent
shoppers tend to have a long lifetime. This would imply a negative correlation between both rates. Abe
(2009a) recently suggested a Hierarchical Bayes extension of the Pareto/NBD model that incorporates
such correlation. In this model, the two gamma distributions are replaced by a bivariate log-normal
distribution. Next to the possibility to capture correlations, another advantage of this model is that
individual-specific covariates can be used. A disadvantage of this extension is that for some quantities,
closed-form expressions are no longer available. As a result, the proposed model by Abe (2009a) needs

Bayesian (simulation) techniques. We will refer to this model as the HB model.



2.2 Model performance

The first empirical validation study in the field, which reports the performance of a BTYD model in
a holdout period, is presented by Schmittlein and Peterson (1994). This study not only provides an
extensive empirical validation of the Pareto/NBD model, but also extends the model by adding the
customer’s spending decision. A major contribution of this paper is that it provides insights into the
sampling properties of parameter estimates. For instance, the authors show how the accuracy of
parameter estimation depends on the average observation time and on the number of customers
in the sample (the space/time trade-off). Schmittlein and Peterson (1994) also examine whether
customer characteristics can help in predicting transaction and defection behavior. In an application
in the business-to-business market, they show that some groups of customers tend to have higher
transaction rates while others have higher average dropout rates or a greater variation in dropout rates.

Fader, Hardie, and Lee (2005a) also include a validation study. This study compares the performance
of the BG/NBD and the Pareto/NBD models on data from the online CD retailer CONOW. They show
that replacing the exponential dropout process (of Pareto/NBD) with a geometric one (BG/NBD)
improves the model fit in the calibration period. The Pareto/NBD model, however, performs slightly
better than the BG/NBD based on the quality of predictions of individual-level transactions in the
forecast period. Fader, Hardie, and Lee (2005a) argue that the BG/NBD model is a good alternative
for the Pareto/NBD model as it has similar performance, but requires fewer resources for parameter
estimation.

In a third study, Batislam, Denizel, and Filiztekin (2007) compare the Pareto/NBD and BG/NBD
models in terms of predicting the future number of transactions and the accuracy of the probability
of being active. The comparison is based on loyalty card data from a specific store of a large grocery
chain in Turkey. The authors also present a slight variation on the BG/NBD model. In this modified
BG/NBD (MBG/NBD) model, customers may also drop out at time zero that is directly after making
their first purchase. The MBG/NBD model yields almost identical estimates for the expected number
of repeat purchases to the BG/NBD model. The general conclusion is that both the Pareto/NBD and
the MBG/NBD models show similar performance on customer’s purchase and defection processes.

Wiibben and Wangenheim (2008) compare the Pareto/NBD and the BG/NBD models against man-
agerial heuristics. In general, these heuristics are easy to implement, but are less detailed in terms
of their predictions. Wiibben and Wangenheim (2008) focus on predicting the number of future

transactions and classifying active versus inactive customers. In terms of this classification, the man-



agerial heuristics perform at least as well as the models. However, the models perform better than
the heuristics when predicting future transactions numbers. In this paper, the authors identify a
potentially important problem of the BTYD models. On some datasets, the models produce extremely
high probabilities of being active. Such high probabilities correspond to extremely long (residual)
lifetime estimates.

Abe (2009a) compares his HB model to the Pareto/NBD model. He finds a similar fit and predictive
performance. The disaggregate fit measures are the Mean Squared Error [MSE] of the predicted
transaction numbers of individual customers, and the correlation between these predictions and
the corresponding realizations. With regard to predicting future transaction numbers, the HB model
performs slightly better than the Pareto/NBD model on two of the three datasets. The covariance matrix
of the heterogeneity distribution is used to test the independence assumption of the Pareto/NBD. No
significant dependency is found for any of the three datasets.

Finally, Jerath, Fader, and Hardie (2011) compare their PDO model to the Pareto/NBD and BG/NBD
models using two datasets. They pay more attention to the defection process, and check model’s
performance on the median of lifetime estimates for each model. Note that the median lifetime
is considered here, not the mean lifetime. Previous research has shown that the former is a better
descriptor of the lifetime distribution (Reinartz and Kumar|2000) as using the median results in less
extreme lifetime predictions. At a first glance, the Pareto/NBD and the PDO models produce similar
results on the median lifetime. However, the PDO model predicts longer lifetimes for a randomly
chosen customer than the Pareto/NBD model. The BG/NBD model’s estimates are very different in
that it predicts extremely long lifetimes. Based on these results, the authors suggest that the modeling
of the defection process needs to be improved. Jerath, Fader, and Hardie (2011) also compare the
models with respect to the predictions of the number of transactions. The Pareto/NBD and the PDO

models show similar predictive performance and generally outperform the BG/NBD model.

2.3 Lifetime estimation

The BTYD models are usually compared on two dimensions: transaction frequency and lifetime
related measures. Mostly, the first dimension is emphasized. An important challenge with the second
dimension is that the exact lifetime is never observed. Even the state of a customer (active or inactive)
can never be perfectly measured. There have been many attempts to validate predictions on customer

lifetime or the active/inactive state. However, the majority of these studies acknowledge that the used
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indicators are not perfect.

Schmittlein and Peterson (1994) use telephone interviews to validate customer defection predictions.
Customers are called and asked about their intentions to purchase from the company at an unspecified
time in the future. However, even such a direct contact with a customer may not lead to the ‘actual’
defection information. It is known that customer’s intentions are imperfect predictors of future
behavior (Morwitz and Schmittlein|1992).

Batislam, Denizel, and Filiztekin (2007), Reinartz and Kumar (2000) and Wiibben and Wangenheim
(2008) base the 'true’ active status of a customer on observed purchase activity in a holdout period. The
model’s predictive performance in terms of the defection process is next evaluated on this active status.
However, as acknowledged by Wiibben and Wangenheim (2008), customers who have not purchased
in the holdout period may still be active and make a purchase after that period. In this sense, such a
comparison is not fair and leads to favoring models that underestimate the lifetime. This is especially
true, if the holdout period is short and/or the purchase rate is low.

Apart from the complexity of validating lifetime predictions, the managerial relevance of the lifetime
concept has also been questioned. Reinartz and Kumar (2000) challenge the implicitly assumed
strong association between lifetime and profitability in the noncontractual setting. Contrary to the
general claim that a long customer lifetime is always desirable, they find that revenues mainly drive
the lifetime value of a customer, not the duration of customer tenure. This argument is particularly
valid in industries where customer switching costs are small (Reinartz and Kumar[2000). Furthermore,
Jerath, Fader, and Hardie (2011) show that lifetime estimations from various BTYD models can vary to
alarge extent.

As aforementioned, in some cases, the BTYD models give extremely high active probabilities, which
correspond to the extreme lifetime estimations (Wiibben and Wangenheim[2008). Such clearly incor-
rect predictions could lead to a reluctance to use these models in practice. Perhaps with this in mind,
Reinartz and Kumar (2000) strongly suggest firms not to neglect the transaction orientation of their

business and to manage the short term accordingly.

2.4 Qur contribution

Based on the discussion above, the only theoretically valid measure that is available to compare the
BTYD models seems to be the accuracy of the predicted (future) transaction frequency. However,

although the existing models are quite different in terms of their specification, they produce similar



predictions on this measure. In other words, this measure is not sensitive to differences among the
models. In this paper, we introduce a new performance metric to overcome this problem.

Our measure is based on the timing of transactions and represents an observable value. Given the
memoryless property on interarrival times of transactions in the considered BTYD models, we can
predict the timing of the first and the last transaction in a certain period. As an in-sample metric, we
propose the timing of the last in-sample transaction; as a holdout metric, we propose the minimum of
the timing of the first out-of-sample transaction and the end of the holdout period.

In this paper, we compare the existing models on this new measure and on the predicted number of
purchases. To make this possible, we derive formulas on the timing of transactions for each of the BTYD
models. The methodology to calculate these timing predictions is also an important contribution of
this paper. Besides providing a more rigorous comparison among BTYD models, these predictions also
have managerial relevance. Predictions on the timing of the next purchase for each customer could be
important information for both marketing and operations managers.

To our knowledge, our paper is the first to bring all the following models together: the Pareto/NBD,
BG/NBD, the Hierarchical Bayes extension of the Pareto/NBD, and the recently proposed PDO model.
Next, we are the first to compare these models based on the timing of purchases. A challenge in the
comparison is that the models exhibit differences in their estimation procedures. The Pareto/NBD,
BG/NBD and PDO models have closed-form expressions on some statistics for a randomly’ chosen
customer, such as the probability of being active and the expected number of future purchases. These
models also yield closed form expressions for some statistics conditional on the observed transaction
pattern of a customer. On the other hand, the HB model does not provide an analytical expression
for important quantities due to the log-normal heterogeneity distribution. For this model, there is no
closed-form expression for any relevant statistic not even for a randomly chosen customer. However,
the complete distribution on any statistic can be obtained for each customer using MCMC methods.
In order to overcome the difficulty of comparing the models, we bring the Pareto/NBD, BG/NBD
and PDO models to the level of the HB model. More exactly, we obtain the complete individual-level
distribution on the behavioral parameters for each model conditional on observed behavior. This

provides great flexibility when computing various individual-level performance metrics.



3 Models and the Timing of Transactions

In this section, we present the models in technical terms. All models provide a representation of
individual behavior by considering two arrival processes: one on purchase and one on defection.
Individuals are assumed to make transactions according to the purchase process until they defect.
The defection and transaction processes for individual i depend on individual-specific parameters
which we denote by ;. On the population-level, all models specify a heterogeneity distribution for
(the elements of) 6;. This distribution is parameterized by hyperparameters which are denoted by &.
Below, we give the details for each model, and present expressions for the last transaction timing in
the calibration period and the first transaction timing in the holdout period. The timing expressions
vary depending on the assumptions of the models. To our knowledge, these expressions have not been
presented before.

Table[2|gives a summary of the assumptions and the dominant estimation method for each model.
We distinguish between assumptions on individual behavior and on heterogeneity. All models have
the same assumption on the purchase process of an individual, while active. The models do differ in

the defection process or in the heterogeneity distribution.

Table 2: Model comparison with respect to the assumptions and estimation process

Pareto/NBD BG/NBD PDO HB
Purchase process Poisson Poisson Poisson Poisson
Defection process Exponential Shifted geometric Shifted geometric Exponential
Defection timing Continuous On purchase moments Fixed periods Continuous
Purchase rate distribution Gamma Gamma Gamma Bi-variate log-normal
Defection rate distribution Gamma Beta Beta
Estimated parameters Hyperparameters Hyperparameters Hyperparameters Hyper & individual par.
Estimation procedure MLE MLE MLE MCMC

Before we present the models, we briefly discuss the general ideas used for calculating the predic-

tions.

3.1 Conditional and unconditional inference

One can use the BTYD models to obtain predictions on different metrics. However, closed-form
expressions for individual-level metrics conditional on the observed data are not always available.
Below we indicate how to calculate such metrics. Suppose we want to predict a particular metric for

customer i, we denote this as metric;. There are two options: to include or not to include the purchase
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history of this customer. The latter case is mainly relevant for in-sample predictions (model validation)
and, the prediction can be seen as a prediction for a randomly chosen customer. We label this as
unconditional inference. The former is relevant for out-of-sample predictions. These predictions are
made conditional on data of the specific customer.

For conditional inference, we need to calculate E[metric;|all data]. We rewrite this expectation as

E[metric;|all data] = J E[metric;|data;, 8;]7(8;|all data) dO;

b (1)

=J J E[metric;|data;, ;]7(0;|data;, &)r(&|all data) d6; A&,
&Jo;

where 0; denotes the individual-level parameters for individual i and & denotes the hyperparameters
associated with the whole customer base in the focal BTYD model. In Sections[3.2]to[3.5} we provide
closed-form expressions for E[metric;|data;, ;] for each model. Calculating the integrals in () can
still be very complex. However, samples from 77(8;|all data) can be obtained for all models. If the model
relies on Maximum Likelihood Estimation [MLE], z(&|all data) is seen as a point mass at the Maximum
Likelihood estimate £, and draws are obtained by sampling from 7(6;|data;, £). For BG/NBD and PDO
models, closed-form expressions are available for these conditional densities and we can apply direct
sampling. For the other models, draws from the posterior are obtained using a Metropolis-Hastings

MCMC sampler (Hastings|1970). In general, we approximate the integral for all models using
L

1
E[metric;|all data] ~ I ZE[metrici |data;, 91,(1)]’
=1

where Hl.(l), [ =1,...,L, are draws from the posterior 7(6;|all data).

In the case of unconditional inference we need to calculate

E[metric;|all data_;] = f E[metric;|0;]7(0;|all data_;) dO;
0;
:fJ E[metric;|0;]7m(6;|E)m(&|all data_;) dO; d& 2)
EJ;

NJJ E[metric;|0;]7(0;|E)n(&|all data) dO; d&
EJO;

where all data_; denotes the available data ignoring the data for individual i. In the last line, we

assume that enough data is available such that the contribution of a single individual to the conditional
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distribution of the hyperparameters can be ignored. In this case we approximate the expectation by

L
E[metric;|all data_;] ~ %;E[memciwi” .
If hyperparameters are estimated using MLE, 01.(” denotes a draw from 7(6;|), with & the Maximum
Likelihood estimate. If Bayesian estimation is used, the draws are obtained by first sampling £(!) from
n(&lall data) and next sampling 91.(” from 7(0;|EW).
In the sections below, we present the expressions for the conditional expectation of the timing of the
last in-sample transaction and the next out-of-sample transaction together with the sampling schemes

for the behavioral parameters.

3.2 Pareto/NBD Model

In the Pareto/NBD model, customer i remains active for a stochastic lifetime (¢ ;) which has an
exponential distribution with rate u;. While active, this customer makes purchases according to a
Poisson process with rate A;. The purchase rate and the defection rate are assumed to be distributed
according to two independent gamma distributions across the population. The distribution for A;
has shape parameters r, and scale parameter a. The shape and scale parameters for u; are s and f3,
respectively.

The parameters of the heterogeneity distributions can be estimated by MLE. The likelihood can be
written in terms of the number of purchases (x;) and the timing of the last purchase (#y,;) for each
customer. This estimation procedure can be quite tedious from a computational perspective as the
likelihood function involves numerous evaluations of the Gaussian hypergeometric function.

Schmittlein, Morrison, and Colombo (1987) presented some key expressions such as the probability
of being active at the end of the calibration period (7;) and the expected number of future transactions
in a given time period for both a randomly chosen customer and a customer with past observed data
(xi, tx,i, Ti).

The Pareto/NBD model allows us to predict also the timing of the last transaction in the calibra-
tion period and the timing of the first transaction in the holdout period. Given the individual-level

parameters A; and y;, we can obtain the expected timing of the last purchase as

2 1—eHiTi 1 — e~ (itudTi
Eltyi|lAi, ui, T;] = — , 3
[£x,ilAiy i, Ti 7 Py 3)
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see [Appendix A.1|for the associated derivations. By comparing E[?y ;|A;, ui, T;], averaged over the

estimated distribution of A; and u;, to the observed timing of the final purchase, we can assess the
model’s fit performance.

To measure the model’s performance on out-of-sample predictions, we can use the timing of the first
purchase in the interval [T;, Tl.+], where T;r marks the end of the out-of-sample period. A complication
here is that a particular customer may not make any purchase in this interval. For example, this
may happen if the customer has defected. In turn, this makes it extremely difficult to compare the
predictions to realizations. We solve this by instead predicting the minimum of the next purchase
timing and T''; for individual i this minimum is denoted by ;. If the customer has defected, t7,; = T;".

In/Appendix A.1} we show that the conditional expectation of fr,; in the Pareto/NBD model equals

Eltf,ilxi, tx,ir Ty Ais phi]l = (A =Pleai > Tilxi, ti Ty Aiy i) T7

1— e—(liﬂii)(T,-Jr—Ti)
+P[ta,; > Tilxi, i, Ti, Aiy i) (T; + P ), @

where P[ta,; > T;lx;, tx,i, T;, Ai, i) gives the probability that individual i is still active at time T;. This

probability can be shown to equal
Ai
i + i eituidTi=txi) ’

)

see Schmittlein, Morrison, and Colombo (1987). Note that this probability depends on the time
between the last (in-sample) purchase and T;. There is still a chance of defection in this period, but,

given the data, a purchase is impossible in that interval.

Sampling of the behavioral parameters for the Pareto/NBD Model

The joint posterior distribution of the behavioral parameters, 8; =(A;, u;), of the Pareto/NBD model is
characterized by the likelihood function, the independent gamma priors on these parameters, and the

(ML estimates of the) hyperparameters, £ =(a, 1, 3,s):

ﬂ(eildatai) g):n(kinuilrya,s’ﬂyxiy tx,i’ ’Tl)

o £, s, Til i, i) €A1 (s, B) ©
i (e Pittidtini 4 3, o= (Ritui)Tiy @ o1 gmar P ) oy
x e i i)lx,i ‘e L ) — e ~ Y e "
it : r(r) "

As mentioned before, among the models that rely on MLE, the Pareto/NBD model is the only one that
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does not have a standard distribution of individual parameters, 7(6;|data;, £). A Metropolis-Hastings

algorithm can be used to sample from this posterior density. Details of this sampling algorithm are

presented in Appendi B}

3.3 BG/NBD Model

The BG/NBD model replaces the continuous defection process of the Pareto/NBD model by a discrete
process. Customers can now only drop out at the moment of a repeat transaction. This implies that
the defection process is explicitly dependent on the purchase process.

Jerath, Fader, and Hardie (2011) argue that such a dependency may not be realistic, as heavy buyers
eventually get more opportunities to drop out. However, the advantage of this model is that its
parameters can be estimated more easily. The individual’s purchase process is Poisson with intensity
Ai ~T(r,a) like in the Pareto/NBD model. The dropout probability for individual i is denoted by p;
and follows a beta distribution with shape parameters a and b. The hyperparameters of the BG/NBD
model can be estimated using MLE.

Fader, Hardie, and Lee (2005a) present the expression for the expected number of (future) trans-
actions of each customer, conditioned upon the hyperparameters. In[Appendix A.2} we derive the
expected timing of the last in-sample transaction and the next out-of-sample transaction. Again, we
truncate the next future transaction timing to the end of the out-of-sample period (Tl.+). The expected
timing of the last in-sample transaction equals

Bty Ti0 2 I (1—ehnl 1-ghT 7
Lxi Ay Pi) = N ’
(tx,il T, Aiy Pi) 1-p; 2ipi X (7)

and the conditional expectation of the timing of the next transaction equals

B(t5,ilxi, tx,is Tiy Ais pi) = (A = Plta,i > Tilxi, tein Tiy Ady i) T,
_ e—/li(Tl-Jr—Ti)

1
+P[ta,; > Tilxi, tei, T, Aiy i) (T7 + T)- 8)
1

For this model, the conditional probability of being active at time T; equals

pieki(Ti_tx,i)

Pltai > Tilxi tei, Ty Ais ] = 1= 81, >0 7 — Dt pre Tt

where 0, ;>0 is a 0/1 indicator, which equals 1 if consumer i made a repeat purchase.
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Sampling of the behavioral parameters for the BG/NBD Model

To sample the individual rate parameters of the BG/NBD model, we again make use of ideas from
Bayesian statistics. Directly sampling from the joint conditional distribution of A; and p; is not easy.
However, we can derive the full conditional distributions of A; and p;. We, therefore, propose to use a
Gibbs sampler which successively draws from the conditional distribution of A; given x;, t ;, T; and p;,
and the conditional distribution of p; given x;, tx,;, T; and A;. After convergence, this Markov Chain

generates draws from the joint conditional distribution. Details of the derivations of both distributions

are presented in{Appendix B.2| The conditional density of the purchase rate A; is

pi 1-pi
(txyl,+a)xi+r (T+a)xl+r
(Ailx;, tx,i> 1i, Pi) = i 1—p; ‘Pxi-i-r,tx,i—i-a(li) + o ! 1 p:i SDxi-i-r,]}-i-a(Ai), 9
(tx,i+a) i+’ + (Ti+ayi*r (tx,i+a)it" 7 (Ti+a)<itr

where ¢, g is the density of a gamma distribution with shape parameter x and rate parameter . The

conditional density of the defection probability p; equals

a
a+(b+x;—1)e Hlli—k

n(pilxi, tx,i, Ty Ai) = i)ﬁa+1,b+xi—1(Pi)+

(b+x;— l)e—li(Ti—tx,i)
a+(b+x;—1)e M~k

i)ﬁa,b+xi(pi)r (10)

where f3, 5 is the density of a beta distribution with parameters a and b. As the distributions are
mixtures of gamma or beta distributions, respectively, sampling from these distributions is straightfor-

ward.

3.4 PDO Model

The most recent BTYD model is the Periodic Death Opportunity (PDO) model. This model is based on
the BG/NBD model, but assumes that a customer may only defect after each 7 periods of time. The
defection process is, therefore, no longer linked to purchase occasions and heavy purchasers do not get
more defection opportunities. Jerath, Fader, and Hardie (2011) show that the PDO model can be seen
as a generalization of the Pareto/NBD and the NBD model. If 7 becomes very small, the PDO model
approaches the Pareto/NBD model. The PDO model collapses to the NBD model when 7 exceeds the
observation period, leaving no dropout possibility for customers.

More precisely, the PDO model assumes that the interpurchase time for individual i has an expo-

nential distribution with parameter A; ~I'(r, @). Customers may defect with a probability of p; after
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each 1 periods, where p; follows a beta distribution with parameters a and b. The PDO model has
four hyperparameters for the heterogeneity distributions and the additional period length parameter
7. MLE can again be used to estimate the hyperparameters; for more details see Jerath, Fader, and
Hardie (2011).

The introduction of the 7 parameter complicates the prediction of the timing of the last and the
next transactions. 7; is likely not a multiple of 7, and we need to deal with the delay between the last
opportunity to defect before T; and, for the computation of the expected first future transaction, the
delay between T; and the first opportunity to defect after 7;. A further complication is the possibility
that there is no defection opportunity during (7;, T;"]. Details of the derivations are presented in

The expected time of the last transaction in the in-sample period is

N:
i l_e—nﬂﬂ' ) l_e_AiT[
Blteil T Anp) = 3 pil — pi)'™! (’”‘T) + (= p)V (T_A—) an
n=1 ! !

where N; equals the number of defection opportunities, that is, N; =|T;/7|. The expected time of the
first purchase in the out-of-sample period (T;, Tl.+] is
1 1 ~
E(tsilxi, tx,i, Tiy At pis T =(A—p ) TH+pf [(Ti + Je T —(T; + T )e M 46 e gy T e T
1 ]
+8 2N 1)e (e‘*f“N"“”‘T”pi T+ (1 = pi) (Ni+ D7 + B 24, pi, T = (N + 1)¢))) ] , (12)
where T; is the minimum of the first defection opportunity in the out-of-sample period for customer i

and Tl.+, that is, T; = min((N; + 1), Tl.’“). Furthermore, p:f is shorthand notation for the conditional

probability that individual i is active at time T;. This probability is given by

(1—pi)Nie~HTi

: -1
pie Y, (A=pe™ )"+ (1-p)NieHT

pi =P(tai > Tilxi, tri, T, Ay pi) =

where m, ; is the first opportunity to defect after t, ;, thatis, my ; = l% + IJ and we define ZZ: ()=0
whenever a > b. Finally, E(¢*|A;, p;, TiJr —(N; +1)7) is the expected value of the minimum of the time
of the first transaction in (0, Tl.+ —(N;+1)7)and (T;r —(N; +1)7). The expression for this expectation is

given in Equation (36) of the appendix.
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Sampling of the behavioral parameters for the PDO Model

To sample A; and p;, we again propose a Gibbs sampler; see|Appendix B.3|for the details. Conditional

on the data and p;, A; follows a mixture of gamma distributions, that is,

N w( N+
E willds Xi,pi
m(Ailxi, b, Ti, pi) = —Soxi‘*‘rﬂ-‘-(n—l)f()ti) + - Oxi+ra+T (A7) (13)
n=my,; mivtx,irpi W)Ci:tx,ivpi

N+l (n)
where W, 1. ..p, = 2,1, Wxi,p,» and

1— infl .
piw ifl<n<N;
(n) _—
wx?'pi—
1-p;)Ni .
% ifn=N;+1.

The conditional distribution of p; is a mixture of beta distributions, that is,

Ni (n) U&Nﬁl)
Rpiksis tui T A= D 32— Bartven1(p)+ 5 —Babni(pi) a4)
n=my,; Z’)(,iu i tx,iv i

N;+1 (n)

nemes Vs o and

where Vi, 2, = Z

B(a+1,b+n—1)e Mi=(r=D7) if m, ; <n<N;
(n) _

UAZ_

B(a,b+ Nj;) ifn=N;+1,

where B(-,-) is the beta function. Note that the value V;_;, 1, depends on the data only through m, ;.

3.5 Hierarchical Bayes Extension of the Pareto/NBD Model

The models presented above do not allow the individual-level parameters to be correlated and they
do not take into account customer characteristics. In many cases, individual-level characteristics
are available and may be useful in predicting customer behavior. Abe (2009a), therefore, proposes a
Hierarchical Bayes [HB] extension of the Pareto/NBD model in which the individual-level parameters
follow a bivariate log-normal distribution. The mean of this distribution may depend on customer
characteristics.

The disadvantage of this extension is that closed-form expressions for interesting metrics, such as

the expected number of purchases, are no longer available. Besides, MLE can no longer be straight-
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forwardly used to obtain parameter estimates. Abe proposes the use of Markov chain Monte Carlo
[MCMC] techniques to estimate the (hyper)parameters and to calculate various metrics.

Abe (2009a) makes the same individual-level assumptions as in the Pareto/NBD model, but assumes
that (logA;,logu;) ~ N(w;,T'), where w; is a 1 x K vector of individual characteristics, including an
intercept. In case no covariates are available, the distribution reduces to N(f,I'). I is not restricted to
a diagonal matrix and, therefore, this model allows the individual-level parameters to be correlated.

The joint density of the data and all parameters forms the basis for the inference. This density is
given by

N
m({xi, te,i, Tiy Ay ik, B.T) = l_[ (ﬂ(xi, tx,i|liyui)ﬂ(/1i,ui|ﬁyr)) n(B,1).

i=1
Here n(B,I') is the prior distribution of the population-level parameters f and I'. The standard
conjugate prior is used, that is,  ~ N(fy,A,) and I" follows an inverted Wishart distribution with
parameters (vg, I'g). As the individual-level behavioral assumptions of the HB model are identical to
the Pareto/NBD model, conditional on A; and yu;, all timing related expressions are the same. Draws
for the individual-level parameters are a natural by-product of the MCMC sampler.

Abe (2009b) proposes an extension of the HB model by adding the amount of spending. Hereby, the
individual parameter vector, 6;, extends to three dimensions, including the rate of average log-spending
of customers, (logA;,logu;,logn;). We also include this extension in our empirical study. Consequently,
we consider four different configurations of the HB model. The first configuration (HB1) represents the
HB model without any covariates and without spending. The second configuration (HB2) incorporates
only the customer-specific covariates. The third and fourth configurations represent the HB models

with the average spending parameter, and without or with covariates, respectively.

Sampling of the hyperparameters and the behavioral parameters for the HB Model

We use MCMC for inference on the hyperparameters and the individual parameters for the HB models.
More specifically, we use a Metropolis within Gibbs sampler (see Hastings (1970)). The sampler uses
the latent variables z; and #5,;, where z; is the binary variable representing whether customer i is
active (z; = 1) or inactive (z; =0) at the end of the calibration period; and if already inactive, ¢5 ; is the
defection time (see Abe (2009a)). As our sampler differs from the one presented in Abe (2009a), we

present the main steps of the sampler:

[0] Set initial value for 6;,i =1,...,N.
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[1a] Generate z;|ty i, X;, T;, 8; according to the being active probability given in Equation (), for

i=1,...,N.
[1b] If z; =0, generate 5 ;|tx,i, X;, T}, 2;, 0; using an exponential distribution truncated to (y,;, T;).

[2] Generate 8,T{0;}Y_, using a standard multi-variate normal regression update (see Rossi, Allenby,

and McCulloch (2005, Page 34)).
[3] Generate 0;|ty i, xi, T;, 21, ta,i, B, with a Gaussian random-walk MH algorithm, fori =1,..., N.

The step size in the random-walk MH algorithm is set by applying an adaptive MH method in the

burn-in phase (Gilks, Richardson, and Spiegelhalter|1996).

4 Data

We compare the performance of the presented models on three datasets. Below, we briefly discuss
these three datasets.

The first dataset contains daily transaction data of an online grocery retailer in the Netherlands. We
base our analysis on a random set of 1460 customers who started buying from the company in January
2009. We ignore all Sundays as the company does not provide delivery on that day. The available data
contains the initial and the repeat purchase information of each customer over a period of 309 days.
To estimate the model parameters, we use the transaction data of all customers over the first 154 days,
leaving a 155 day holdout period for model validation.

The second dataset is the commonly used CDNOW data. This publicly available dataset covers the
transactions data of 2357 customers who made their first transaction in the first quarter of 1997. The
data spans a period of 78 weeks from January 1997 through June 1998. We set the calibration and
holdout periods to 39 weeks each.

The final dataset comes from a Turkish grocery store. This set is also used by Batislam, Denizel, and
Filiztekin (2007) and Jerath, Fader, and Hardie (2011). It contains the transactions of 5479 customers
who made their first purchase between August 2011 and October 2011, covering a period of 91 weeks.
To be consistent with the earlier papers, we use the first 78 weeks for calibration and leave 13 weeks for
validation purposes. Detailed descriptive statistics of all datasets appear in Table[3]

The three datasets have quite different characteristics. Together they span a wide range of pur-

chase and activity patterns. For instance, in the first dataset, the majority of customers are frequent
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Table 3: Descriptive statistics over the three datasets

Online grocer CDNOW Grocer

Number of customers 1460 2357 5479
Available time frame 309 days 78 weeks 91 weeks
Time split (in-sample/out-of-sample) 154/155 39/39 weeks  78/13 weeks
Available time units days weeks/days  weeks
Zero repeaters in estimation period (fraction) 174 (0.12) 1,411 (0.60) 2,221 (0.41)
Zero repeaters in holdout period (fraction) 295 (0.20) 1,673 (0.70) 4,577 (0.84)
Zero repeaters in estimation and holdout periods (fraction) 135 (0.09) 1,218 (0.51) 2,179 (0.40)
Number of purchases in estimation period (all) 16,252 2,457 24,840
Number of purchases in holdout period 12,827 1,882 2,907
Average number of purchases

per customer in estimation period (stdev) 11.13 (10.76) 1.04 (2.190) 4.53 (9.17)
Average number of purchases

per customer in holdout period (stdev) 8.79 (10.78) 0.798 (2.057) 0.53 (1.72)

Average length of the observation period (T) (stdev)
Average recency as a fraction of T (T — )/ T)

143.76 (7.39)
0.27

32.72 (3.33)
0.79

22.81 (26.87)
0.67

customers, whereas the other two datasets include a large group of incidental buyers. Although the
first two datasets both deal with online retailers, the industries in which these retailers operate are
different, namely groceries versus CDs. We see a clear difference in the customer’s loyalty to the firm;
the average frequency of shopping per customer is higher at the grocery retailer than at the CD retailer.
The fraction of customers without a repeat purchase (zero-repeat buyers) is also much smaller for the
online grocer compared to CDNOW. A customer’s final observed purchase tends to be close to the end
of the sample for the online retailer. This is reflected in the last row of Table[3} which gives the average
recency normalized by the average observation period.

Customer behavior at the brick-and-mortar grocer is quite different compared to that at the online
grocer. Contrary to the general claim in the literature, the customers of the online grocer are more
loyal to the company than those of the grocer chain. The rate of zero-repeat buyers in the grocer’s
data base is considerably higher, and the average normalized recency is significantly lower than for
the online grocer. In what follows, we relate the performance of the models on three datasets to their

characteristics.
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5 Empirical Findings

We split this section in two parts. First, we discuss the parameter estimates for all models and datasetd}
Next, we focus on the predictive performance of the models, where we distinguish between (1) ex-
pected number of transactions; and (2) expected timing of transactions. We especially focus on
the performance of the models in predicting the timing of the last in-sample purchase and the first
out-of-sample purchase.

For the online retailer datasets (online grocer and CDNOW), covariate data on the average number
of shopping items per customer is available. This data is used in the HB model configurations HB2
and HB4. As both datasets also have individual-level spending information, the spending extension of
the HB models (HB3 and HB4) can be applied as well. We mean-center the covariate (average number
of items in the shopping basket) so that the mean of the behavioral parameters, 0;, given average
covariate values will be entirely determined by the intercept. As no covariate nor spending information
is available for the third dataset (grocer), only the HB1 model can be used. For all HB models, the
MCMC steps were repeated 256,000 iterations, of which the last 32,000 were used to infer the posterior
distribution of parameters. Convergence was monitored visually and checked with the Geweke test on

all datasets (Geweke et al.[1991).

5.1 Parameter estimates
Maximum Likelihood-based models

First we present the parameter estimates that are based on ML estimation; namely for the Pareto/NBD,
BG/NBD, and PDO models. Using the estimates, we can get insight in the degree of heterogeneity
in each customer base as well as in some key quantities for a random customer. Table[d|reports the
estimated hyperparameters for the online grocer. According to the Pareto/NBD model a random
customer makes 0.072 transactions per day while active. Note that this statistic cannot be calculated
directly from the data as it intrinsically contains the condition of being active. The shape parameter
(r =0.958) indicates a moderate level of heterogeneity in purchase rates across customers (Schmittlein,
Cooper, and Morrison|1993). For this dataset, the PDO model fits best when the period length 7 is set
to about 20 days. The parameters related to the purchase process in the PDO model are very similar to

those in the Pareto/NBD model. The BG/NBD model also gives a very similar result for the purchase

1All calculations are performed using MATLAB R2011b.
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rate of an average customer while active (0.071 purchases). The relatively small shape parameter value
(r =0.897) indicates slightly more differences in purchase rates across customers within the BG/NBD

model.

Table 4: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Estimates - online grocery

retailer

Pareto/NBD BG/NBD PDO (7t =20.001)
r 0.96 r 0.90 r 0.94
a 13.35 a 12.64 a 13.13

r/a 0.072 r/a 0.071 r/a 0.071
S 0.04 a 0.03 a 0.04
B 38.24 b 3.00 b 2.18

s/p 0.001 a/(a+b) 0.010 a/(a+b) 0.018

log-likelihood -49,208 log-likelihood -49,212.3 log-likelihood -49,201.4

The estimated average defection rate for the Pareto/NBD model is given by s/ = 0.001. As the shape
parameter s is less than 1, the expected lifetime value of a random customer from the cohort diverges
to infinity. From another perspective, half of the customers in the cohort defect after (21/5 — 1) =
383,014,675 days. This shows that a short-term measure rather than these long lifetime estimations
would be more useful for a manager. The probability of a random customer defecting in the next day is
only 1 — e~/ =0.001. In other words, it is highly unlikely that such a customer will drop out in the
near future. However, the very small value of s suggests that there is a very large dispersion in defection
rates.

The estimation results for the CDNOW data are given in Table[5| We obtain the same parameter
estimates as Fader, Hardie, and Lee (2005a). We find that an average customer makes around 0.05
transactions per week, while active. The small shape parameter value indicates substantial differences
in purchase rates across customers. Similar to the previous dataset, the heterogeneity on defection
rates is extremely high on this dataset (s = 0.606 in the Pareto/NBD model) and the expected lifetime
value of a random customer from the cohort diverges to infinity.

When applying the models on the Turkish grocery dataset, we find that while active, an average
customer places approximately 0.1 orders per week; see Table[6| The population is quite heterogeneous
in purchase rates. The heterogeneity is even greater according to the BG/NBD model. For an in-depth

discussion on the customer lifetime, we recommend the discussion in Jerath, Fader, and Hardie (2011).
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Table 5: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Estimates - CDNOW

Pareto/NBD BG/NBD PDO (7t =3.001)
r 0.55 r 0.24 r 0.52
a 10.58 a 4.41 a 10.40
r/a 0.052 r/a 0.055 r/a 0.05
S 0.61 a 0.79 a 0.43
B 11.66 b 2.43 b 2.61
s/B 0.052 a/(a+b) 0.246 a/(a+b) 0.142

log-likelihood -9,595 log-likelihood -9,582.4 log-likelihood -9,585.6

Table 6: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Estimates - grocery

retailer
Pareto/NBD BG/NBD PDO (7t =1.001)
r 0.48 r 0.28 r 0.46
a 4.38 a 2.34 a 4.38
r/a 0.11 r/a 0.12 r/a 0.105
s 0.57 a 0.40 a 0.62
B 17.60 b 2.09 b 22.19
s/pB 0.033 a/(a+b) 0.161 a/(a+b) 0.027

log-likelihood -67,925.8 log-likelihood -68,008.3 log-likelihood -67,757.3

MCMC-based models

In order to apply the HB models we first need to set the prior distributions. In many contexts, the prior
is set diffuse enough so that it does not affect the posterior. In other words, the prior variance is set to
a very large value. For the prior onI', we initially use vo = J +3 and I’y = v I, where J represents the
number of behavioral parameters of a customer (see Rossi, Allenby, and McCulloch (2005} Page 30)).
This is an extremely spread prior. However, in case limited data per individual is available, such a prior
may have a strong impact on the posterior. Indeed, looking at the likelihood function for the HB model
given in Equation (37), it can be seen that the likelihood for a zero-repeat buyer (x; =0 =ty ;) tends to
1 as u approaches oo for any value of A. Therefore, without a proper prior the posterior does not exist.
The prior needs to ensure that the posterior density for large values for u approaches 0 quickly enough.
Very diffuse priors fail to deliver this property, leading to (very) unstable estimates.

Among the datasets in our study, the CDONOW dataset is unique in terms of having a very large
proportion of zero-repeat buyers. In other words, the data does not provide much information.
We, therefore, need to set a relatively informative prior for this dataset. Accordingly, we choose

vo=J+30and I'g = v I. In this way, extreme estimates are avoided and population-level estimates
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are reasonable?] Still, we have experimented with a diffuse prior on this dataset. A detailed look at the
results per individual (not reported) reveals that there are indeed extreme values for some parameters
(in a range of 5.108). We also observe very different predictions for individuals with a history of zero-
repeat transactions, following the reasoning stated above. A further elaboration on the selection of the
prior parameters on the CDNOW dataset is given in[Appendix C

The hyperparameters of the HB models are not directly comparable to the hyperparameters of
the other BTYD models, not only because of the different heterogeneity distribution (log-normal
distribution versus gamma and beta distributions), but also because the multi-variate structure of the
log-normal distribution allows correlation between parameters for a single customer. Table|[7|gives
the median and the mode of the posterior mean of behavioral parameters across customers in each
dataset. It is interesting to note that the location of the population distribution in the HB models
seems to be different to that for the other models. In the next section, we investigate whether this has

an impact on the models’ performance.

Table 7: Median and mode of the behavioral rates of HB model estimates

HB1 HB2 HB3 HB4
A u A u A u A u
. median 0.0474 0.0008 0.0471 0.0008 0.0479  0.0002 0.0479 0.0003
online grocer
mode 0.0204 0.0003 0.0233  0.0004 0.0086 0.0001 0.0085 0.0001
CDNOW median 0.0045 0.0129 0.0072 0.0170 0.0081 0.3834 0.0089 0.5117
mode 0.0045 0.0132 0.0073 0.0019 0.0080 0.0006 0.0083 0.0004
median 0.0469 0.0568 - - - - - -
grocer

mode 0.0464 0.0080 - - - - - -

5.2 Unconditional predictions

We follow the procedure described in Section[3.1]to obtain unconditional predictions. As individuals
in the customer database make their first purchases at different times, the time span T varies across
customers. Consequently, we obtain different in-sample predictions for different values of . We
calculate the unconditional predictions for each of the T; values in the database and average over
them. These predictions are only based on the population-level parameters, estimated using all the
data in the customer base. Hence, they serve as good indicators of the model’s ability to fit the overall

data pattern. Table [8]shows some statistics on the unconditional expectations on the number of

2With a more diffuse prior, an extremely large number of iterations is needed to obtain accurate estimates of posterior
quantities as the posterior variance will be very large.
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transactions and the timing of the last transaction for each model and each dataset. The first row
shows the statistics based on the observed values for each dataset.

The mean predictions for the HB models are very different from the other model predictions on
CDNOW datdP| However, the predicted values are much closer to the median and mode of the data. In
other words, it seems that the large number of zero-repeat buyers pulls the predictions from the HB
models towards smaller values. This is probably due to the shape of the population distribution. As
can be seen in Table[4] the mode for the population distributions of A; and ; are at 0. The log-normal
distribution does not allow for a mode at 0 without also pulling the mean towards 0 (or having an
extreme variance). This explains why the mean predictions for the HB models are pulled towards 0.
For the other datasets, the percentage of zero-repeat buyers is not as large, therefore this phenomenon

is not observed there.

Table 8: Average of unconditional expectations versus observed quantities in calibration period

Number of transactions Time of last transaction
mean median mode mean median mode
True 10.132 6 0 105.421 128 0
= Pareto/NBD 7.926 8.000 8.300 76.786  77.831 78.410
S BG/NBD 6.593 6.647 6.970 57.841 58.571 61.670
b PDO 9.789 9.884 10.360 104.217 105.574 111.540
_E HB1 10.573 10.694 11.150 103.157 104.419 110.650
To:‘: HB2 10.707 10.826 11.320 106.048 107.289 113.780
HB3 11.231 11.341 11.290 101.139 102.482 107.830
HB4 11.139 11.256 11.360 101.662 102.942 104.270
True 1.042 0 0 6.864 0 0
Pareto/NBD 1.071 1.071 1.100 6.804 6.790 6.860
= BG/NBD 1.058 1.057 1.000 6.913 6.889 7.760
% PDO 1.079 1.078 1.150 6.915 6.900 6.540
@) HB1 0.227 0.227 0.220 2.884 2.862 3.090
© HB2 0.245 0.244 0.230 3.020 2.997 2.590
HB3 0.232 0.231 0.220 2.900 2.880 3.410
HB4 0.235 0.235 0.220 2.953 2.926 2.690
True 4.534 1 0 22.805 7 0
% Pareto/NBD 4.462 4.443 4.320 22.589 22.411 21.850
§ BG/NBD 4.240 4.222 4.150 23.951 23.731 23.000
o0 PDO 4.424 4.403 4.290 22.841  22.667 22.110
HB1 4.839 4.816 4.700 22.485 22.313 21.910

We also provide some performance measures for the number of in-sample transactions (x) and the
time of the last in-sample transaction (z,) for each model. Table[9]shows the in-sample Mean Squared
Error (MSE), Mean Absolute Error (MAE) on all predictions and Mean Error on the over- (ME+) and

underpredicted (ME—) observations for all models on the three datasets. At a first glance, all models

3Note that the mean unconditional predictions move even further away with the most diffuse prior. For example, it becomes
0.09 for the HB2 model, see Table
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have a similar fit when predicting x. The PDO model performs slightly better with respect to MSE
on the CDNOW and the grocery data. The estimated hyperparameters for this model lead to a low
probability of extreme values on these datasets. On the other hand, the HB model fits the best in terms
of MSE on the online grocery dataset. In terms of absolute errors in the unconditional predictions of x,
the BG/NBD model has the best fit for the online grocer and the grocer data.

The HB models perform well on the CDNOW dataset in terms of the MAE. The high MSE and the
low MAE values for the HB models on CDNOW link back to our earlier discussion. The high number
of zero-repeat buyers in this dataset causes the predictions to move towards the mode of the data.
Consequently, on this dataset, the mean of the unconditional predictions of the HB models approaches
the strong mode of the data. This fact leads to a low MAE for the HB models. All models show an
asymmetry in the unconditional prediction error. If the forecast is too high, the error tends to be
relatively small.

The Pareto/NBD, BG/NBD and PDO models have a very similar performance when predicting the
last purchase time on the CONOW dataset. The PDO and the HB are the best performing models
with respect to the unconditional predictions on this measure for the CDNOW and the online grocer
datasets (considering the MSE and the MAE, respectively). On the grocer dataset, all models have a
similar fit on predicting ., except the BG/NBD model which fits slightly worse on this metric.

Among the different configurations of HB models, we see that inclusion of covariates generally
causes a slight increase in model fit on both measures. On the other hand, adding the spending
parameter into the estimation procedure leads to a slight decrease in model fit for the frequency and

the timing of in-sample transactions on the online grocer data.

5.3 Conditional predictions

In this section, we consider individual-level predictions conditional on the individual’s history. As
discussed in Section[3.1} for some metrics of interest, obtaining closed-form expression conditioned
on an individual’s history and hyperparameters can be extremely cumbersome because of the integral
in Equation (). We, therefore, first obtain draws for the individual’s behavioral parameters from the
posterior densities and next calculate the expected value of the metrics of interest by averaging over
these draws. For the Pareto/NBD model, we use a Gaussian random-walk MH sampler to obtain draws

of individual parameters conditional on the hyperparameters. To satisfy convergence, we repeat the
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Table 9: In-sample predictive performance for unconditional predictions of the number of transactions
(x) and the time of last transaction ()

X t, in weeks

MSE MAE ME+ ME— MSE MAE ME+ ME—

Pareto/NBD 116.636 7.803 4.847 11.841  90.526 8.926 9.106  8.873
BG/NBD 124992 7.725 4.096 11.516 131.352 10.809 7.560 11.573
PDO 111.038 8.123 6.367 10.880 66.809 6.774 10.523 5.071

HB1 110.832 8.302 6.923 10.666 67.110 6.852 10.598 5.205

HB2 110.910 8.335 7.009 10.647 66.822 6.664 10.672  4.803

HB3 111.485 8.473 7.371 10.513  67.495 6.986  10.430 5.505

HB4 111.323 8.442 7.292 10.559 67.337 6.949 10.466  5.427
Pareto/NBD 4.789 1.282 0.886 2.411 114.655 8.899 6.353  14.758
BG/NBD 4.788 1.276 0.879 2377 114.640 8.942 6.462  14.647

online grocer

% PDO 4.786 1.286 0.888 2.446 114.610 8.940 6.455  14.683
Z HB1 5.455 1.087 0.227 2370 130.332  7.547 2772 16.282
8 HB2 5.426 1.090 0.244 2352 129.251 7.586 2.895 16.282

HB3 5.448 1.088 0.231 2365 130.195  7.551 2.787  16.265

HB4 5.442 1.089 0.235 2362 129.796  7.567 2.835 16.271
- Pareto/NBD  83.958 5.454 3.554 11.381 719.044 24.024 19.359 31.472
8 BG/NBD  84.097 5.341 3.342 11.503 720.197 24.341 20.457 30.755
§o PDO 83.949 5435 3.517 11.413 719.137 24.082 19.571 31.323

HB1  84.081 5.650 3.900 11.298 719.229 24.001 19.274 31.532

iterations 300,000 times, of which only the last 10,000 iterations were use(ﬂ For the BG/NBD and PDO
models, we use a two-step Gibbs algorithm with 30,000 iterations, of which only the last 8,000 draws
are used.

For metrics like the transaction frequency of a customer with history (x;, t,;, T;), closed-form
expressions for the Pareto/NBD, BG/NBD and PDO models are available conditional on both hyperpa-
rameters and behavioral parameters. This allows us to test our procedure based on the posterior draws
on individual’s parameters. We compare our simulation-based predictions to the results computed
by the closed-form expressions conditioned on hyperparameters given in Schmittlein, Morrison, and
Colombo (1987), Fader, Hardie, and Lee (2005a) and Jerath, Fader, and Hardie (2011). In all cases, the
correlation between the expectations is more than 99.995%.

We consider the number of transactions in the out-of-sample period as well as the timing of the first
out-of-sample transaction. More precisely, with the timing of the first out-of-sample transaction, we
mean the minimum of the timing of the next transaction and the end of the out-of-sample period. We
use MSE, MAE and the correlation between predicted and observed values. As the above measures do
not distinguish between over- and underpredictions, we also provide the mean over all positive errors

(ME+: overprediction) and the mean over all negative errors (ME—: underprediction).

4We use an extreme number of burn-in iterations, in practice convergence is achieved much earlier.
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5.3.1 Predicting future transaction frequency

Table[10]summarizes the predictive performance on the number of future transactions. The HB models
perform best in terms of the MSE, MAE and correlation measures on the grocer and the online grocer
datasets. Taking into account that the covariate information works well for the online grocer, the HB2
model performs, consequently, the best among the HB models. For this model, the coefficient of the
average number of items in the shopping basket is significant at the 5% level (based on the highest
posterior density [HPD] interval). Adding the average spending worsens the out-of-sample predictions
on transaction frequency. Therefore, the HB3 and HB4 models do not perform as well.

The good predictive performance of the HB model can be explained by the relaxation of the inde-
pendence assumption in the heterogeneity distribution. Note that the HB and the Pareto/NBD models
share the same individual-level assumptions. To further investigate the dependence, we take a look at
the estimated correlations between purchase and defection rates. As emphasized by Abe (2009a), it
makes most sense to look at the estimated correlations for the no-covariate configuration of the HB
models (HB1 and HB3). Table[11]reports the posterior mean correlations for each pair of parameters on
each dataset for the HB3 model, together with the highest posterior density regions (Hyndman 1996).
We find a strong and significant negative correlation between purchase and defection rates for the
online grocery data. Accordingly, we see a remarkable improvement on the prediction performance of
the HB models on this dataset. We find a significant, but relatively smaller, negative correlation on
the grocery data. The HB1 model performs only slightly better than the other models on this data.
There is no significant correlation between the purchase and defection rates for the CONOW dataset,
and consequently, the Pareto/NBD model is the best predicting model with its more flexible gamma
heterogeneity distribution.

The final two columns in Table[10|summarize the model’s performance with regard to over- (ME+)
and underpredictions (ME—). We find that for the Pareto/NBD model, the magnitude of underpredic-
tions is bigger than that of overpredictions on all datasets. For the other models, the difference between
ME+ and ME— depends on the data. The average underprediction is always larger than the average
overpredictions on the CDNOW and grocery retailer datasets. It is exactly the other way around for the
online grocer data, where the customers are relatively more loyal to the company. To further elaborate
on this, we construct Table[12] This table presents summary statistics on the group of observations
that are under- or overpredicted. We list the size of the group, mean values of the purchase frequency

(x) and the recency (T — 1) in the calibration period, observed frequency in the holdout period (x*)
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Table 10: Model’s prediction performance on the number of transactions

Correlation  MSE MAE ME+ ME-

Pareto/NBD 0.9207 21.556 3.055 2.344 3.830

§ BG/NBD 0.9195 20.840 2996 3.253 2.340
9 PDO 0.9169 21.219 3.047 3.347 2.343
?; HB1 0.9243 18.807 2.806 3.008 2.363
= HB2 0.9250 18.543 2.779 2941 2.419
© HB3 0.9218 20.242 2942 3.089 2.530
HB4 0.9221 20.168 2.934 3.075 2.538

Pareto/NBD 0.6304 2568 0.754 0.429 1.866
BG/NBD 0.6248 2.589 0.787 0.456 1.831

% PDO 0.6214 2.709 0.903 0.696 1.737
Z HB1 0.6235 2.962 0.717 0.209 2.083
8 HB2 0.6127 2.954 0.736 0.253 2.054
HB3 0.6241 2.743  0.680 0.234 2.090

HB4 0.6223 2.740 0.678 0.236 2.095

g Pareto/NBD 0.8230 0.954 0.398 0.242 1.615
§ BG/NBD 0.8216 0.966 0.416 0.265 1.602
5 PDO 0.8189 0.983 0.460 0.317 1.591
HB1 0.8238 0.951 0.394 0.239 1.600

Note that ME+ and ME— give the average of over- and underpredictions
over the groups

Table 11: 95% Highest Posterior Density Region and mean of correlations between behavioral rates

L6,6, P6,6, L6,6,
HPDR mean HPDR mean HPDR mean
online grocer -0.718 -0.297 -0.501* 0.694 0.770 0.732* -0.765 -0.687 -0.730*
CDNOW -0.215 0.197 -0.011 0.235 0.421 0.332* -0.729 -0.675 -0.703*
grocer -0.259 -0.115 -0.184* - - - - - -

* Indicates that 0 is not contained in the 95% HPDR (highest posterior density region).

and predictions (E[x]) for both groups. All models overpredict the transaction frequency, x, for the
majority of customers in each datasets. In general, the overprediction occurs for those customers with
a low transaction frequency and a long recency; and vice versa for the underprediction. In other words,
the BTYD models overestimate transaction frequency for incidental buyers and underestimate it for

frequent buyers.

We next study the relation between the prediction error and the number of in-sample purchases.
The plots in Figure[1]show the average predicted number of out-of-sample purchases as a function of
the number of in-sample purchases. Figure[2|gives the MAE as a function of the number of in-sample

purchases. To be able to focus on the main differences between the model classes, we do not show the
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Table 12: Statistics on the groups of over- and underpredictions of future transaction frequency

Overpredicted observations

Underpredicted observations

ME+ cus.% x (T—ty) x* E[x] ME— cus. % X (T—1ty) x* E[x]
Pareto/NBD 2.344 52 6.593 8.855 3.138 5.482 3.830 48 13.984 3.705 14.934 11.104
§ BG/NBD  3.253 72 8.912 6.887 6.072 9.325 2.340 28 13.243 5.119 15.710 13.371
g,; PDO  3.347 70 8.730 7.030 5.795 9.142 2.343 30 13.412 4.889 15.787 13.444
o HB1 3.008 69 8909 6.998 5917 8.925 2.363 31 12.806 5.058 15.061 12.698
% HB2 2.941 69 8.961 7.037 5.993 8.934 2.419 31 12733 4949  14.993 12.574
S HB3 3.089 74 8908 6.599 6.172 9.261 2.530 26 13.560 5.802 16.109 13.580
HB4 3.075 74  8.944 6.573 6.212 9.287 2.538 26 13.482 5.872 16.047 13.509
Pareto/NBD  0.429 77 0.851 27303 0.170 0.598 1.866 23 1.695 20977 2.946 1.079
BG/NBD  0.456 76 0.813 27.698 0.144 0.600 1.831 24 1.764 20.113 2.859 1.028

% PDO 0.696 80 0.913 26.942 0.216 0.912 1.737 20 1.564 21.567 3.136 1.399
Z HB1 0.209 73 0.631 28.748 0.041 0.250 2.083 27 2116 18666 2.836  0.753
8 HB2 0.253 73 0.639 28.672 0.046 0.299 2.054 27 2111 18.760  2.853  0.798
HB3 0.234 76 0.733 27.811 0.108 0.342 2.090 24 1.982  20.343 2977  0.887

HB4 0.236 76  0.742 27.744 0.115 0.351 2.095 24 1.968 20.477 2.988 0.893

- Pareto/NBD  0.242 89 3.516 51.082 0.145 0.387 1.615 11 12.464 17.209 3.533 1.918
‘g} BG/NBD  0.265 89 3.573 51.029 0.155 0.420 1.602 11 12.105 17.298 3.489 1.887
5 PDO 0.317 89 3.541 51.002 0.149 0.466 1.591 11 12.411 17.287 3.561 1.970
HB1 0.239 88 3404 51.180 0.152 0.391 1.600 12 12.095 17.151  3.450 1.850

results for the HB models including spending and/or covariates.

The PDO model tends to yield higher predictions for CONOW data. This matches our findings
in Tables|10[and On average, the HB1 model yields the lowest predicted transaction numbers.
Remarkably, this is not reflected in a poor forecasting performance for this model. In fact, Figure 2a]
shows that the HB1 model predicts very well for all values of the in-sample number of transactions. For
the grocer dataset, all models show a very similar prediction pattern. Only the PDO model stands out
with its relatively high predictions. Figure[2b|shows that this leads to higher MAEs. The Pareto/NBD
model is different from the other models for the online grocer data. This model has the tendency to
underpredict transaction numbers (see also Tables[10]and[12).

The MAE tends to increase with the number of in-sample transaction numbers for the CDNOW and
grocer datasets, contrasting with what is observed for the online grocery data (see Figure[2). The online
grocer dataset stands out with its data center leaning toward frequent buyers. The predictions now

result from models pulling values to this center.
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Figure 1: Conditional expectation of future transaction numbers on CDNOW, grocer and online grocer
datasets. All plots right-censor the horizontal axis for readability. For CDNOW data, the
group having > 7 repeat-purchases corresponds to only 3% of the observations; for the grocer
dataset 9% of the observations are in the group > 15; and for the online grocer 6% are > 26.
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Figure 2: MAE on the number of future transaction predictions on CDNOW, grocer and online grocer

datasets

5.3.2 Predicting future transaction timing

Finally, we consider the performance on predicting future transaction timingﬂ Tablepresents an

overview of the main results. Interestingly, the PDO model has a good performance on the CONOW and

grocer datasets. This model did not perform particularly well on predicting the number of transactions.

Note that the timing of transactions is strongly influenced by the defection process and that the

PDO model specially focuses on this process. Jerath, Fader, and Hardie (2011) demonstrate that the

PDO model allows the defection process to be somewhere in between the extremes implied by the

Pareto/NBD model and the no-defection NBD model. The PDO model performs the worst on the

5We thank Batislam, Denizel, and Filiztekin (2007) and Fader, Hardie, and Lee (2005b) for making the out-of-sample timing

data available.
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online grocer data. One reason may be the long (estimated) defection period interval (7 =20.001 days).

The HB models also perform rather well on the grocer and online grocer datasets. For both datasets
we found a significant correlation between the behavioral parameters. Among the HB models, a
remarkable point is the improved performance of the HB3 model when taking into account the average
spending amount on CDNOW and online grocer datasets. This can be explained by the existence of
the strong and significant negative correlation between the spending and defection parameters in

both datasets (see Table[L1).

Table 13: Model’s prediction performance on the timing of next transaction
Correlation MSE MAE ME+  ME-

Pareto/NBD 0.7296 46.674 4.508 2.649 5.801
§ BG/NBD 0.7259 47.173  4.523  2.668  5.792
o PDO 0.6780 50.668 5.116  3.152  7.769
?.)D HB1 0.7328 43.416 4.223 2991 5.134
% HB2 0.7254 44374 4.296  3.068 5.210
© HB3 0.7201 46.594 4.067 2973 4.772

HB4 0.7204 46.504 4.073 2983  4.777
Pareto/NBD 0.5789 125451 7.372 17.013  4.027
BG/NBD 0.5750 125.153  8.122 17.027  5.033

% PDO 0.5828 123.441 8.517 15.343 6.228
Z HB1 0.5486 273.555 15.660 10.062 17.051
8 HB2 0.5449 282423 15.865 9.781 17.352
HB3 0.5687 270.514 15.408  9.229 16.898

HB4 0.5689 270.028 15.376  9.214 16.850

. Pareto/NBD 0.8183 7.684 1.442 4590 1.182
8 BG/NBD 0.8192 7.770  1.542  4.551 1.293
§D PDO 0.8226 7976 1.734 4469 1.514
HB1 0.8190 7.602 1.426 4.639 1.171

ME+ and ME— give the average over the groups of overpredictions and
underpredictions

In Table[14} we investigate for what type of observation the purchase time is over- or underpredicted.
We present the size of the over- and underpredicted group, group-specific characteristics in the
calibration period, the average observed timing (t_;i) in the holdout period and the average predicted
time (W). In line with the previous results, all BTYD models underpredict the timing of the next
purchase for customers who have a low transaction frequency and high recency; and vice versa for the
groups of higher predictions.

In Figure[3} we show the average predictions as a function of the time of the last in-sample transaction

(tx). Note that the timing predictions are explicitly influenced by ¢, (see Equations (@), (8), and (12)).
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Table 14: Statistics on the groups of over- and underpredictions of future transactions timing

Overpredicted observations

Underpredicted observations

ME+ cus.% X (T—t) f Ely] ME-cus% X (T-t) ; Ely

Pareto/NBD  2.65 41 11.80 447 2749 30.14 580 59 897 772 37.93 3213
§ BG/NBD 267 41 1179 449 2751 3018 579 59 899  7.69  37.85 32.05
e PDO 3.5 57 1371 338 2739 3054 777 43 530 1045 4211 34.34
2 HBI 299 43 11.69 461 27.60 3059 513 57 897 771 3813 32.99
% HB2 3.07 43 1162 457 27.60 3067 521 57 903 775 3815 32.94
S HB3 297 39 1173 486  27.59 3056 477 61 910 738  37.55 32.78
HB4 298 39 1175 485 27.58 3056 478 61 9.09 738 3757 32.79
Pareto/NBD  17.01 26 226 1852 4349 6051  4.03 74 062 2842 7134 66.31
BG/NBD 17.03 26 2.21 1880 43.68 60.69 503 74 0.64 2832 71.28 67.25

= PDO 1534 25 227 1846 4304 5839 623 75 0.63 2836 7125 65.03
Z HBl 10.06 20 245 17.60 39.80 49.86 17.05 80 0.69 28.10 70.22 53.17
5 HB2 978 20 250 17.40 39.62 4940 17.35 80 0.69 2812 70.17 52.82
HB3 923 19 238 1829 39.80 49.03 1690 81 072 27.88 70.05 53.15

HB4 921 19 238 1833 39.74 4896 1685 81 072 2785 70.01 53.16

_ Pareto/NBD 459 8 7.7 2332 7503 7962 118 92 432 4921 8277 8159
§ BG/NBD 455 8 7.0 2321 7505 79.60 129 92 432 4922 8277 8148
& PDO 447 7 7.8 2288 7481 79.28 151 93 432 4918 8277 8126
HBl 464 8 718 2330 7503 79.67 117 91 418 4923 8276 81.59

We show the corresponding MAE values in Figure[d] Figure[3aclearly shows that the HB1 model gives
quite different predictions compared to the other models for CONOW; for HB1 the predictions tend to
be smaller. Based on Figure[4alwe conclude that these predictions are too low. The MAE for the HB1
model is the highest among all models. However, for the recent buyers (high z, values) the differences
between the models are relatively small.

For the grocer dataset, we see that all the models, except the PDO model, have almost identical
predictions and performance for the non-recent buyers (see Figures [8b]and [4b). The PDO model
has lower predictions and higher MAE for those customers. Again for recent buyers, all models have
very similar predictions so that it is difficult to distinguish between the models for this group of
observations.

For the online grocer data, the PDO model also performs relatively poorly for non-recent buyers
(see Figures[3dand[4c). The PDO model tends to underpredict the timing of the first transaction for
customers who do not have recent transactions. On this data, the majority of customers are frequent
buyers who had recent transactions. For instance, the percentage of customers who have 7, < 10
weeks is just 15% and therefore the left hand side of the figure does not have a big weight in the overall
predictive performance of the models for this dataset. However, for the other datasets, a large part of

the dataset have low values of ¢, (53% of customers have ¢, <10 on the grocery dataset and 73% of
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customers has t, <10 on the CDNOW dataset).
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Figure 4: MAE of future transaction timing predictions on CDNOW, grocer and online grocer datasets

6 Discussion

In this paper, our aim is to present a new use of the existing buy-till-you-defect [BTYD] models. In the
current literature, the main focus is on predicting the transaction frequency. We argue that prediction
of the future transaction timing of an individual is also very relevant. For each of the most popular
BTYD models, we develop a method to calculate such predictions.

First of all, these timing predictions are useful to compare the quality of the existing models on an
additional metric. Next, timing predictions have a clear managerial purpose. For example, consider an

online retailer implementing micro-marketing strategies. The most appropriate time to contact its
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customers depends on their expected timing of the next purchase. High quality timing predictions
may contribute to achieving the full potential of micro-marketing (Zhang and Krishnamurthi2004).

Following the pioneering research by Gupta (1988), there is a growing literature that examines the
effectiveness of promotions on whether to buy, 'when’ to buy, and how much to buy (see the summary
of relevant literature in Goniil and Hofstede (2006)). We believe that using the BTYD models to predict
the timing of transactions provides a new means of answering the 'when’ question.

An operations manager may also use predictions on the timing and transaction value as input for
Revenue Management. For example, online retailers have limited delivery capacity at a given time.
Given the appropriate predictions, operations managers can prioritize valued customers for highly
demanded delivery time slots (Talluri and Van Ryzin|2005). Tereyagoglu, Fader, and Veeraraghavan
(2012) emphasize the crucial role of having accurate timing predictions to improve revenues. In
summary, we believe that the ability to predict the timing of future transactions can be helpful to
accelerate research on aforementioned topics in industries that operate in a noncontractual setting.

We present a general method and specific formulas that can be used to predict the timing of the
next purchase for four of the established BTYD models. Such formulas have not been presented before.
We use these methods to compare the predictive performance of all models on three very different
datasets. We find that the predictive performance of the models varies not only with the characteristics
of the data, but also with respect to the performance metric.

Managers who aim to forecast their customers’ transaction frequency should first examine general
characteristics of the customer cohort and then choose the best fitting model. The HB models tend
to perform relatively poorly in case data is weak due to many zero-repeat buyers. On the other hand,
they do have a clear advantage if there are many repeat buyers and there are significant correlations
between the behavioral parameters.

The PDO and HB models perform well on the timing of transaction predictions, again conditional
on some data characteristics. Our conclusions on model choice are based on informally relating data
characteristics to forecasting performance on just three datasets. There are studies that attempt to
formally quantify and validate such relations through classification and regression trees and random
forests (Schwartz, Bradlow, and Fader|2012). Such a formal study is very welcome in this context to
arrive at more general recommendations.

By comparing the predictive performance on future frequency versus timing, we found that the

BTYD models perform rather poorly on the latter. A closer focus on the defection process may lead
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to better timing predictions. The ideas of Bueschken and Ma (2012) may be helpful in this context.
They provide a new perspective on possible switches between active and inactive states, and allow
for both regular and incidental buyers by relaxing the Poisson process assumption on the arrival of

transactions.

Appendix A Timing expressions

In this section, we present the derivations of the expected timing of the last transaction, t,, in the observation
period [0, T] and the expected timing of the next event (either the first purchase or the end of the forecast
interval), f7, conditioned on an individual’s parameters. The hyperparameters do not play a role here. In all
sections of this appendix we drop the i subscript, representing customer i, for notational simplicity. In the

notation we also do not condition on the length of the observational interval T.

Appendix A.1 Timing of transactions for Pareto/NBD and HB models

The derivations in this section apply to the original Pareto/NBD model and its HB extension. The expressions

are the same as both models have the same assumptions on individual behavior. The time of defection, £, has

the probability function]
P(dtalA, w) = pe H2 dia . (15)
Setting t5 = min(za, T), we obtain
ue M dts ifo<ts<T
P(dtsIA, )= e=#T51(t5)dts ifts=T (16)
0 otherwise,

where 6,,(x) is the Dirac-delta function at w evaluated at x4’} Conditioning on the unobserved value 5, we find

the density of £, on (0, T] as

P(dtc|t5, 2, p)= (A1) 4 6 (t:)e ™ ) dis, a7

6We use a rather formal notation here as our stochastic variables have a mixed discrete/continuous distribution. For
practical purposes one can see the part before dz, on the right-hand side of (I5) as the traditional probability density
function.

“More precisely, 0,,() is a point mass at w normalized such that for any continuous function g, f g(t)o,(t)dr = g(w).
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where we make use of the memoryless property of the Poisson process. Informally, we can look back in time and

do as if the process starts at ¢5. Integrating over f5, one obtains

Atu)tx +7Le’(/H“JT

) pe! = dt, ifo<t, <T
P(dt oA, ) = f P(dtelts, A ) P(dEs |2, 1) = (18
t5€lte,T] (AﬂTu n MXLW) So(ty)dty ift,=0.

Based on Equation (I8), the expected value on the time of the last transaction is calculated as follows,

o0

1—e 1T 1 — e~ A+u)T

E(txll,u)=f L P(dte| A, u) = - : (19)
0 u A+

Next, we present the derivations for the predictions of the time of next event from the end of the calibration
period conditional on x and ,: E(¢f|x, fx, A, u). Let T* be some future horizon T* > T. Consider the first future

transaction after T. We define ¢y as the time of this occurrence or T+, whichever is first. We have
E(trlx, ty, A, ) =E(t7|x, tx, 2 =1,2,0) p* + E(ts]x, tx, 2 =0,A,u) (1 — p*),
where z = 1 indicates that a customer is active at time T and

pT=E(zlx, ty, A, u) = (20)

A+ (T °

Consider an active customer. Then the density of the first timing, #, of a transaction on (T, c0) is Ae~(A+1(t=T)
and ¢ has a point mass at infinity of AuTu as defection may have been the first event to happen. Therefore, on the
interval (7, T*] the density of ; given a customer’s transaction data and that the customer is active at time T is

p(tlx, ty, 2 =1,A, u) = Ae~M+1(-1) The expectation is computed as,

T+
E(tflx, tx, A, p) = p+f trp(t|x, te,z=1,2,u)dt
T
T+
+p*t (1 —J mp(tlx, ty,z = 1,A,u)dt) TH+(1-pHT* @D
T
(A+u)(T—t) A 1 — e-(eu)T+=T)
=T+ “e—(T* -7 ¢

+
A.{_‘ue(l"'ﬂ)(T—fx) A+‘UQM+H)(T—I.‘:) A.’-‘u

Appendix A.2 Timing of transactions for BG/NBD model

In the BG/NBD model, the timing of defection, ¢,, is also the timing of the last transaction and its density is

P(dta|A, p) = Ape P2 dta, (22)
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see Fader, Hardie, and Lee|2005a. It should be noted that the first purchase at time 0 is special in that a customer

cannot defect at time 0. Given that t5 = min(za, T):

Ape=*ris dig ifo<tz<T
P(dt514, p) =1 e *PT51(t5)dts ifts=T (23)

0 otherwise .

Conditioning on the unobserved value 5, we find the density of ¢, as

Etg(tx)dtx ifts<T
P(dtxlt5, 2, p) =\ (A(1 = p)e=20-PXT=1) 4 e=20-DT 501, ))dt, ifts=T (24)
0 otherwise .

Integrating over t5, one obtains the probability

P(dts|A, p)= P(dty|ts, A, p)P(dEs|A, p)

t5€[ty, T]

= (Ape Pl +(1—p)Ae TP 4 e 50(1,)) diy .

and, therefore

Alpe Pt +(1—ple*Ter-Pi)dr, if0<t, <T
P(dec|A, p) =1 e=2T5(t,)d 1ty if £, =0 (25)
0 otherwise .

Using equation (25), the expected value of the time of the last transaction in the observation interval [0, T] can

be calculated as

T

1 [1-e?T 1-—e T

E(t:|A, p) =f tA(pe P4 (1—pleTer-P)dr, = ( - ) . (26)
0 ( ) 1-p Ap A

For the case x, t, > 0 one easily sees, by referring to the Pareto/NBD result on p* in Equation (20) under
substituting (1 — p)A for A and Ap for y, that

1-p .
W 1fx,tx>0

pT=Plz=1|x,1t;,A,p)= 27)
1 ifx=0=t¢,.

The density of the first future transaction given the rates, the observed transaction data and the customer being

active at Tis mp(t|x, tx,z2=1,A,u)= Ae~Mt=T) Note that an active customer will always make at least one future
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purchase. The expected value of the first future purchase timing (or T%) is

ty=T+

E(tf|x,tx,)t,p)=p+AJ tre ™ Ddep+ (1—p*+pre 2 TD) TF (28)
tf:T
— e~ MT*=T)

1
= T+ (1= p*)T* = D)+ p" ——

(29)

Appendix A.3 Timing of transactions for PDO model

In the periodic-defection-model (PDO) (Jerath, Fader, and Hardie2011) the time of defection, £, has a discrete

distribution with support {n7},-1 2.. which is given as
P(ta =nt|A, p)=p(1—p)" 1, (30)

where 7 can be treated as a known value (estimated using MLE at the customer base level). Let f5 = min(za, T) be
the time after which no transactions are observed. Given t; the distribution of the time, ¢,, of the last observed
transaction in [0, T] is

P(dty|ts, A, p) = Ijo,15)(tx)e M5 (A4 8o (1)) dty, (31)

I, is the indicator function of the set A. Note the distribution’s point mass at 0. One computes

]P’(dtxlkp)=f P(dtx|ts, A, p)P(dt5|A, p)

t5€(ty,T]

N
= ( D p—pyle 41— p)Ne‘”) (A+60(t,)) et dt, . (32)

n=my

where we use the notations N for |T/7] and m, as the time of the first opportunity to defect after or at ¢,,

expressed as a multiple of 7, that is, m, = {% + IJ . Using (32) together with the observation that in our case, it

holds that

Zf Z(-)derZf (-)drx:fo_ (-)dry,
m=1v {my= {my=m} n=1Jt,=0

m} n=m n=1m=1

the expected value for the time of the last observed transaction in the interval [0, T] is found asﬁ]

N . 1— e—n?w N 1— e—)kT
E(txl)\,p)znzz;p(l—p) (m’—T)+(l—p) (T_T)' (33)

Now let us turn to the timing of the first repeat transaction, ¢;, where, by convention, we set t; = oo in case there

is no repeat transaction after the initial transaction at time 0. More in particular, we study #; capped by the

8For reasons of computational efficiency, in cases where N is a large number, the summation in Equation (33) may be

. —(1—p)N -3t (=p)e*7)" -1
written as — (N(1—p)¥* = (N+1)(1 - p)¥ +1) - Py pe ( (l_pp;,}ﬁ)_l .
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observation period’s length, t* =min(¢#;, T). Then, by analogy to (31) and (32) we obtain

P(dt |25, p) = (T (£ )Ae ™ + e 405 0(s)) dt (34)
and
N
P(dtt|A, p)= Z p(1— p)n—lae—lﬁ +(1- p)N 2e—Mtdrt
n=[t*/7]

N
+ (Z p(l—p) e ™ +(1- p)Ne—”) or(tT)det. (35)

n=1

From the density in (35), the expected value for the timing of the first transaction becomes

N — —nAt _ A
E(tﬂ)&,p, T):Zp(l —p)”*l (1 (n)w—i—l)e ) +(1 —p)N (M)

o A A
1= ((1=-ple2)N _
AT 1— N ,—AT T
+ (pe (= plers +(1—-p)le

or

|T/7)
E(t*|A, p, T)=1/A (1 - Z p(1—p)" '(nAT+1)e ™ —(1-p) T IAT + l)e_”)

n=1

o[ o= (@ =pre)
P 1-(1-ple

+(1—p)lT/fJe—”) T. (36)

This expression for the timing of the first transaction in the calibration period is reused for calculating the timing

of the first future transaction after T, see Equation (12).

Appendix B Estimation procedure for Pareto/NBD, BG/NBD
and PDO models

To calculate the various expectations, we also need draws from the conditional density of the individual-level
parameters. Below we discuss how to obtain such draws for the Pareto/NBD, BG/NBD and PDO model.

For the BG/NBD and PDO models, the relevant parameters are the transaction rate, A, and the probability
of defection, p, per defection opportunity. Below, we argue that we can easily draw from the full conditional
distributions n(A|x, ty, p) and 7(p|x, t,, A). We rely on Gibbs sampling to obtain draws from the joint conditional
distribution 7(A, p|x, t.).

For the Pareto/NBD model, sampling from the full conditionals is not straightforward. Therefore, we need to

develop a different method. We propose to use a random-walk Metropolis-Hastings algorithm to obtain draws
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from the individual-level posterior distribution.

Appendix B.1 The Pareto/NBD model
The likelihood function for the Pareto/NBD model is

X

fl A p) = (ne Wt 4 pe=(HHT) 37)

A+u

Given the likelihood function and the independent gamma priors on the defection and purchase rates, the joint

posterior distribution of the behavioral parameters can be written as

n(Aulna,s, B,x,t) < f(x, t|A, u)gAlr, @)h(uls, B)

M e 0w T2 (—1) g—ah (5-1) =B 58
« e~ Wi 4 3 =T (r=1) g=ad ) (s=1) p=Pu
“M(u ) u

Note that we consider the hyperparameters (r,a, s, ) to be fixed. The candidate draws in our random-walk

Metropolis-Hastings sampler are generated using

A =exp(logA+¢;), &, ~N(0,0%)
u’ =exp(logu+e,),  &,~N(O, ai).

In this way we ensure that the parameters always remain positive.

The parameters are now drawn sequentially using the following two-step Gibbs sampler:
1. Start sampling with initial values for A and u
2. Update A
¢ Draw the candidate value: A¢
e Compute a =min (1, (A%, ulr,a,s, B, X, t:)/m(A, ulr, a, s, B, x, tx)) .
¢ With probability a, set A = A¢
3. Update u:
¢ Draw the candidate value: u¢
e Compute a =min (1, (A, uf|r,a,s, B, x, t)/m(A, ulr, a, s, B, x, t)) .
¢ With probability a, set u = u¢

4. Repeat steps 2 and 3.
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Appendix B.2 BG/NBD model

For the conditional posterior distribution of the transaction rate, we have n(A|x, ty, p) x (A, p)n(x, t.|A, p) such

that

peMixtd 4 (1 —ple~MT+d) if0<t, <T
n(?tlx, Z’x,p)O(A)H—r_l %

e~ MT+a) ifx=0=t¢t,.
We, therefore, have
p 1-p
(te4a)tr (THa)+r
(Alx, tx, p) = ) < = Ot ieralA)+ ) ) = Oxtr,T+a(A), (39)

where @, g is the density of a gamma distribution with shape parameter x and rate parameter f3.

Likewise, for the conditional posterior distribution of the defection probability, we have

pa(l — p)b+x—ze—)ttx +pa—l(1 — p)h+x—1 e M ifo< L, <T
n(plx, ty, A) X T(A, p)n(x, tx| A, p) x
p1(1—p)b-l ifx=0=t¢,

and so
a (b+x—1)e Mt
- +
a+(b+x—1)e M%) Paripra(p) a+((b+x—1)e Mt

(plx, tx,A) = 5 Bapx(p) (40)

where f,,;, is the density of a beta distribution with parameters a and b.

Appendix B.3 PDO model

For the conditional posterior distribution of the transaction rate in the PDO model, we get

S (-pr! (1-p¥
(Alx, ty, p) x (A, p)n(x, te|A, p)x p n:zm:x m ¢x+r,a+(n—1)r(7t) + ((H——T)x Pxtratrr(A),
so that
N W(nz)J w)(cl\;;rl)
Al tnp)= ) — a1+ — arr(A), (41)
X n:me va,tx,p 30x+r a+(n—1)t m’t)“p 80x+ra+
where
(1-p)*! ifl<n<N
) p (a+H(n—-1)7)+r ml=n=
Wy, =
_p\V .
(gﬂ’f)l“ ifn=N+1,
N+1
and Wy, p = Znimx )(cn;
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For the conditional posterior distribution of the defection probability, it holds

N
n(plx, ty, A) < (A, plx, ty) < 7T(A, p)r(x, te|A, p) o p* Z (1= p)btn=2e-MT=n=17) 4 pa=1(q _ p)b+N-1,

n=my
Therefore,
N U(n) (N+1)
(plx, t, )= ﬁﬁaﬂm_l(pn €u Babn(p), (42)

n=my

is a mixture of beta distributions where

Bla+1,b+n—1)eMT-(r-D7) ifm <n<N
B(a,b+ N) ifn=N+1.

N+1
n=my

and V;, 2 =Y. v)(\") and B(-,-) is the beta function. Note that the value V; ; depends on the data only through

My.

Appendix C HB estimation with a very diffuse prior on CDNOW
dataset

Table [15| presents the mean of unconditional expectations for the CDNOW data under a very diffuse prior
distribution. Recall that the prior parameters are chosen as vy = J +3 and I'g = vy I, where ] represents the

number of parameters of a customer (see Rossi, Allenby, and McCulloch (2005, Page 30)).

Table 15: Average of unconditional expectations in calibration period - under a diffuse prior on CDNOW data

HB1 HB2 HB3 HB4
Avg. E[x] 0.228 0.096 0.253 0.209
Avg. E[f,] 2.852 1.110 3.151 2.654

Although a very diffuse prior leads to badly estimated individual-level parameters, this does not necessary
lead to bad predictions on the future transaction number and the timing predictions. The main reason for this
is that these metrics are bounded. Figure[5|and Tables[16]to[19]show the forecasting performance of the HB
models under this very diffuse prior. Hence, it is important to also look at the posterior distributions of the

individual-level parameters. As noted earlier, these are very extreme under a diffuse prior for this data set.
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Figure 5: Conditional expectation of future transaction frequency and future transaction timing on CDNOW -
under a diffuse prior

COMOWY CDMOWY

; . 75
Actual s}
7 k| =% -Pareta/NBD S
BC/MED B )
o gl @PDo | - ;W‘%
I —= —HBl 5 : P
= g B5f
o P B 3
L i &
gs E Ell
£, % g0k Sog
=" i =
3 &
&st E = 1
z g b
E 5l ] E Actual ¥
A0 — & - -Parata/NBD E
BGMBD
1+ 1 < POOD
45H —= —HBl
0 . | T ; . . | . .
7 i 5 10 15 20 i) 30 35

 in Weeks 1-39 t,in Weeks 1-39

Table 16: In-sample predictive performance for unconditional predictions of the expected number of transac-
tions and expected timing of last transaction - under a diffuse prior on CDNOW data

Elx] E[ty] -weeks-
MSE MAE ME+ ME- MSE MAE ME+ ME—
HB1 5.454 1.087 0.228 2.369 130.586 7.537 2.747 16.236
CDNOW HB2 5.689 1.061 0.096 2.501 147.785 7.081 1.094 16.653
HB3 5.414 1.092 0.253 2.344 128.279 7.626 3.024 16.172
HB4 5.486 1.083 0.208 2.388 132.239 7.481 2.556 16.357

Table 17: Model’s prediction performance on the number of transactions - under a diffuse prior on CDNOW

data

Correlation MSE MAE ME+ ME-

HB1 0.6245 2.606 0.758 0.413 1.858

CDNOW HB2 0.6154 2.890 0.748 0.302 1.990
HB3 0.6185 2.997 0.795 0.523 1.962

HB4 0.6173 2.744 0.680 0.247 2.094

Table 18: Highest Posterior Density Region and mean of correlations between behavioral rates - under a diffuse

prior on CDNOW data
P60, P60, Po,0,
HPDR mean HPDR mean HPDR mean
CDNOW -0.163 0.297 0.078 0.070 0.312 0.188* -0.868 -0.835 -0.853*

Table 19: Model’s prediction performance on the time of next transaction - under a diffuse prior on CDNOW

data
Correlation MSE MAE ME+ ME—
HB1 0.5770 126.257 7.502 17.232 -4.052
HB2 0.5538 291.028 16.054 9.423 -17.628
HB3 0.5491 142.779 6.494 5.329 -10.314
HB4 0.5665 271.112 15.367 9.053 -16.873
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