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“Counting Your Customers”: When will they
buy next?

An empirical validation of probabilistic customer base analysis models based on
purchase timing

E. Korkmaz, R. Kuik, D. Fok

This research provides a new way to validate and compare buy-till-you-defect [BTYD]

models. These models specify a customer’s transaction and defection processes in a

non-contractual setting. They are typically used to identify active customers in a com-

pany’s customer base and to predict the number of purchases. Surprisingly, the literature

shows that models with quite different assumptions tend to have a similar predictive

performance.

We show that BTYD models can also be used to predict the timing of the next purchase.

Such predictions are managerially relevant as they enable managers to choose appropriate

promotion strategies to improve revenues. Moreover, the predictive performance on the

purchase timing can be more informative on the relative quality of BTYD models.

For each of the established models, we discuss the prediction of the purchase timing.

Next, we compare these models across three datasets on the predictive performance on

the purchase timing as well as purchase frequency.

We show that while the Pareto/NBD and its Hierarchical Bayes extension [HB]models

perform the best in predicting transaction frequency, the PDO and HB models predict

transaction timing more accurately. Furthermore, we find that differences in a model’s

predictive performance across datasets can be explained by the correlation between

behavioral parameters and the proportion of customers without repeat purchases.

Keywords: Buy-till-you-defect models, purchase timing, Bayesian estimation, customer base analysis,

probability models.
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1 Introduction

Many firms routinely store data on customer transactions. However, processing this data in order

to provide managerially relevant information can still be a challenge. The customer base analysis

literature provides a number of methods to use such data to gain a good understanding of the cus-

tomer’s transaction behavior. In the literature, a distinction is made between a contractual and a

noncontractual setting. The latter is especially challenging as one does not observe the moment at

which a customer leaves the company. In this setting, it is interesting to predict the number of future

purchases, and to infer from observed behavior whether a customer has already left the company. A

wide variety of models is available for these purposes.

The online retail industry is an important example of an industry operating in a noncontractual

setting. Retailers never know which customers are active, or in other words, which customers will con-

tinue to buy from the firm. Thus, the customer database of an online retailer is likely to contain many

inactive customers. For example, in October 2005, eBAY reported 168 million registered customers but

only 68 million of them were counted as active by the company (Gupta et al. 2006). It is, therefore, very

useful to develop a method to identify active customers under a noncontractual setting.

It has been widely recognized in the literature that models that ignore defection, like the early NBD

model by Ehrenberg (1988), do not provide good predictions for this type of industry. They generally

overestimate future transaction frequencies (Schmittlein and Peterson 1994). Schmittlein, Morrison,

and Colombo (1987) proposed the first model that does account for defection. Since then, there has

been a strong focus on the so-called buy-till-you-defect [BTYD]model. Several extensions of the model

by Schmittlein, Morrison, and Colombo (1987) have been introduced (Fader, Hardie, and Lee 2005a,

Abe 2009a and Jerath, Fader, and Hardie 2011). Some of these models have also been used to generate

managerially relevant insights (Reinartz and Kumar 2000, Reinartz and Kumar 2003, and Wübben

and Wangenheim 2008). However, little attention has been paid to providing a rigorous empirical

comparison of the growing number of BTYD models. The models have mainly been compared on their

performance in predicting a customer’s number of purchases in a time interval.

In this paper, we suggest to include another measure in the comparison, namely the timing of the

purchases. The existing models mainly differ in the distribution that governs the defection process.

However, differences in the shape of this distribution may not directly lead to substantial differences

in the expected number of purchases. Other measures, such as the customer being active at the end of

the observation interval, directly involve the (unobserved) time of defection. If we want to use such
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measures for validation, we require additional assumptions or heuristics. The timing of the purchase

is, however, observed and critically depends on the interplay between its transaction and defection

processes. Yet, predicting the timing of the next purchase is not straightforward. We develop methods

for all state-of-the-art BTYD models. Based on these predictions, we provide an extensive empirical

validation and comparison of these models where we go beyond the typical comparison that mainly

considers purchase frequency.

We present the in-sample and out-of-sample performance on predicting the transaction frequency

and the transaction timing of each customer for three datasets. The first dataset is from an online

grocer in the Netherlands. The second is the well-known CDNOW dataset which has been commonly

used as a benchmark set. The third dataset is also used by Batislam, Denizel, and Filiztekin (2007), and

Jerath, Fader, and Hardie (2011) and is from a Turkish grocery retailer.

Our results show that different models can lead to different predictions on timing and frequency. It is

important to understand how the underlying behavioral assumptions of the models lead to differences

in performance. It turns out that certain data characteristics favor use of certain models.

The remainder of this paper is structured as follows. Section 2 gives an overview of the existing

literature on BTYD models. We discuss the main features of and differences across the models, and

present our contribution in more detail. In Section 3, we provide technical details of the considered

models and present new results that deal with the timing of transactions. Section 4 gives a detailed

description of the datasets. After presenting results of the empirical study in Section 5, general

conclusions are discussed in Section 6.

2 BTYD Models

In this section, we briefly compare the main ideas underlying the BTYD models. We also discuss the

similarities and differences across these models. Next, we review earlier empirical validation studies.

Table 1 gives a summary of the related empirical work. We omit from this table studies that employ

the Pareto/NBD model without testing its predictive performance in a holdout period (Reinartz and

Kumar 2000, Reinartz and Kumar 2003 and Wu and Chen 2000). Finally, we discuss lifetime estimation

using the models.
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2.1 Models in comparison

The Pareto/Negative Binomial Distribution (Pareto/NBD) model (Schmittlein, Morrison, and Colombo

1987) is the first model that includes the customer’s defection process. This model assumes that,

while alive, customers make purchases according to a Poisson process with heterogeneous rates.

The lifetime of a customer is modeled using an exponential distribution, also with a heterogeneous

rate. The individual-specific rates of both processes are next treated as random effects and modeled

using independent gamma distributions. This model allows for individual-level calculations on the

probability of being active and the number of future purchases. The structure of the model leads

to closed-form expressions for such predictions given the (hyper)parameters of the heterogeneity

distributions. This feature has made this model useful for today’s personalized marketing concepts

such as direct marketing, one-to-one marketing and customer relation management.

Three important extensions of the Pareto/NBD model have been introduced in the literature. Fader,

Hardie, and Lee (2005a) suggested replacing the continuous time defection process by a discrete

time process. After each purchase, the customer defects with an individual-specific probability. The

resulting model is called a Beta-Geometric/Negative Binomial Distribution (BG/NBD) model. The

disadvantage of this model is that frequent purchasers have more “opportunities” to defect. In some

cases this may not correspond to reality. To solve this problem, Jerath, Fader, and Hardie (2011)

introduced the Periodic-Death-Opportunity (PDO) model. This model is very similar to the BG/NBD,

but defection opportunities are defined in calendar time. In other words, defection can only occur at

certain time intervals, independent of the transaction timing.

Another extension of the Pareto/NBD model deals with the relation between the purchase rate and

the defection rate. In the Pareto/NBD model, and in the above-mentioned extensions, these rates are

assumed to be independent. In practice, this assumption may be violated as, for example, frequent

shoppers tend to have a long lifetime. This would imply a negative correlation between both rates. Abe

(2009a) recently suggested a Hierarchical Bayes extension of the Pareto/NBD model that incorporates

such correlation. In this model, the two gamma distributions are replaced by a bivariate log-normal

distribution. Next to the possibility to capture correlations, another advantage of this model is that

individual-specific covariates can be used. A disadvantage of this extension is that for some quantities,

closed-form expressions are no longer available. As a result, the proposed model by Abe (2009a) needs

Bayesian (simulation) techniques. We will refer to this model as the HB model.
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2.2 Model performance

The first empirical validation study in the field, which reports the performance of a BTYD model in

a holdout period, is presented by Schmittlein and Peterson (1994). This study not only provides an

extensive empirical validation of the Pareto/NBD model, but also extends the model by adding the

customer’s spending decision. A major contribution of this paper is that it provides insights into the

sampling properties of parameter estimates. For instance, the authors show how the accuracy of

parameter estimation depends on the average observation time and on the number of customers

in the sample (the space/time trade-off). Schmittlein and Peterson (1994) also examine whether

customer characteristics can help in predicting transaction and defection behavior. In an application

in the business-to-business market, they show that some groups of customers tend to have higher

transaction rates while others have higher average dropout rates or a greater variation in dropout rates.

Fader, Hardie, and Lee (2005a) also include a validation study. This study compares the performance

of the BG/NBD and the Pareto/NBD models on data from the online CD retailer CDNOW. They show

that replacing the exponential dropout process (of Pareto/NBD) with a geometric one (BG/NBD)

improves the model fit in the calibration period. The Pareto/NBD model, however, performs slightly

better than the BG/NBD based on the quality of predictions of individual-level transactions in the

forecast period. Fader, Hardie, and Lee (2005a) argue that the BG/NBD model is a good alternative

for the Pareto/NBD model as it has similar performance, but requires fewer resources for parameter

estimation.

In a third study, Batislam, Denizel, and Filiztekin (2007) compare the Pareto/NBD and BG/NBD

models in terms of predicting the future number of transactions and the accuracy of the probability

of being active. The comparison is based on loyalty card data from a specific store of a large grocery

chain in Turkey. The authors also present a slight variation on the BG/NBD model. In this modified

BG/NBD (MBG/NBD) model, customers may also drop out at time zero that is directly after making

their first purchase. The MBG/NBD model yields almost identical estimates for the expected number

of repeat purchases to the BG/NBD model. The general conclusion is that both the Pareto/NBD and

the MBG/NBD models show similar performance on customer’s purchase and defection processes.

Wübben and Wangenheim (2008) compare the Pareto/NBD and the BG/NBD models against man-

agerial heuristics. In general, these heuristics are easy to implement, but are less detailed in terms

of their predictions. Wübben and Wangenheim (2008) focus on predicting the number of future

transactions and classifying active versus inactive customers. In terms of this classification, the man-
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agerial heuristics perform at least as well as the models. However, the models perform better than

the heuristics when predicting future transactions numbers. In this paper, the authors identify a

potentially important problem of the BTYD models. On some datasets, the models produce extremely

high probabilities of being active. Such high probabilities correspond to extremely long (residual)

lifetime estimates.

Abe (2009a) compares his HB model to the Pareto/NBD model. He finds a similar fit and predictive

performance. The disaggregate fit measures are the Mean Squared Error [MSE] of the predicted

transaction numbers of individual customers, and the correlation between these predictions and

the corresponding realizations. With regard to predicting future transaction numbers, the HB model

performs slightly better than the Pareto/NBD model on two of the three datasets. The covariance matrix

of the heterogeneity distribution is used to test the independence assumption of the Pareto/NBD. No

significant dependency is found for any of the three datasets.

Finally, Jerath, Fader, and Hardie (2011) compare their PDO model to the Pareto/NBD and BG/NBD

models using two datasets. They pay more attention to the defection process, and check model’s

performance on the median of lifetime estimates for each model. Note that the median lifetime

is considered here, not the mean lifetime. Previous research has shown that the former is a better

descriptor of the lifetime distribution (Reinartz and Kumar 2000) as using the median results in less

extreme lifetime predictions. At a first glance, the Pareto/NBD and the PDO models produce similar

results on the median lifetime. However, the PDO model predicts longer lifetimes for a randomly

chosen customer than the Pareto/NBD model. The BG/NBD model’s estimates are very different in

that it predicts extremely long lifetimes. Based on these results, the authors suggest that the modeling

of the defection process needs to be improved. Jerath, Fader, and Hardie (2011) also compare the

models with respect to the predictions of the number of transactions. The Pareto/NBD and the PDO

models show similar predictive performance and generally outperform the BG/NBD model.

2.3 Lifetime estimation

The BTYD models are usually compared on two dimensions: transaction frequency and lifetime

related measures. Mostly, the first dimension is emphasized. An important challenge with the second

dimension is that the exact lifetime is never observed. Even the state of a customer (active or inactive)

can never be perfectly measured. There have been many attempts to validate predictions on customer

lifetime or the active/inactive state. However, the majority of these studies acknowledge that the used
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indicators are not perfect.

Schmittlein and Peterson (1994) use telephone interviews to validate customer defection predictions.

Customers are called and asked about their intentions to purchase from the company at an unspecified

time in the future. However, even such a direct contact with a customer may not lead to the ‘actual’

defection information. It is known that customer’s intentions are imperfect predictors of future

behavior (Morwitz and Schmittlein 1992).

Batislam, Denizel, and Filiztekin (2007), Reinartz and Kumar (2000) and Wübben and Wangenheim

(2008) base the ’true’ active status of a customer on observed purchase activity in a holdout period. The

model’s predictive performance in terms of the defection process is next evaluated on this active status.

However, as acknowledged by Wübben and Wangenheim (2008), customers who have not purchased

in the holdout period may still be active and make a purchase after that period. In this sense, such a

comparison is not fair and leads to favoring models that underestimate the lifetime. This is especially

true, if the holdout period is short and/or the purchase rate is low.

Apart from the complexity of validating lifetime predictions, the managerial relevance of the lifetime

concept has also been questioned. Reinartz and Kumar (2000) challenge the implicitly assumed

strong association between lifetime and profitability in the noncontractual setting. Contrary to the

general claim that a long customer lifetime is always desirable, they find that revenues mainly drive

the lifetime value of a customer, not the duration of customer tenure. This argument is particularly

valid in industries where customer switching costs are small (Reinartz and Kumar 2000). Furthermore,

Jerath, Fader, and Hardie (2011) show that lifetime estimations from various BTYD models can vary to

a large extent.

As aforementioned, in some cases, the BTYD models give extremely high active probabilities, which

correspond to the extreme lifetime estimations (Wübben and Wangenheim 2008). Such clearly incor-

rect predictions could lead to a reluctance to use these models in practice. Perhaps with this in mind,

Reinartz and Kumar (2000) strongly suggest firms not to neglect the transaction orientation of their

business and to manage the short term accordingly.

2.4 Our contribution

Based on the discussion above, the only theoretically valid measure that is available to compare the

BTYD models seems to be the accuracy of the predicted (future) transaction frequency. However,

although the existing models are quite different in terms of their specification, they produce similar
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predictions on this measure. In other words, this measure is not sensitive to differences among the

models. In this paper, we introduce a new performance metric to overcome this problem.

Our measure is based on the timing of transactions and represents an observable value. Given the

memoryless property on interarrival times of transactions in the considered BTYD models, we can

predict the timing of the first and the last transaction in a certain period. As an in-sample metric, we

propose the timing of the last in-sample transaction; as a holdout metric, we propose the minimum of

the timing of the first out-of-sample transaction and the end of the holdout period.

In this paper, we compare the existing models on this new measure and on the predicted number of

purchases. To make this possible, we derive formulas on the timing of transactions for each of the BTYD

models. The methodology to calculate these timing predictions is also an important contribution of

this paper. Besides providing a more rigorous comparison among BTYD models, these predictions also

have managerial relevance. Predictions on the timing of the next purchase for each customer could be

important information for both marketing and operations managers.

To our knowledge, our paper is the first to bring all the following models together: the Pareto/NBD,

BG/NBD, the Hierarchical Bayes extension of the Pareto/NBD, and the recently proposed PDO model.

Next, we are the first to compare these models based on the timing of purchases. A challenge in the

comparison is that the models exhibit differences in their estimation procedures. The Pareto/NBD,

BG/NBD and PDO models have closed-form expressions on some statistics for a ‘randomly’ chosen

customer, such as the probability of being active and the expected number of future purchases. These

models also yield closed form expressions for some statistics conditional on the observed transaction

pattern of a customer. On the other hand, the HB model does not provide an analytical expression

for important quantities due to the log-normal heterogeneity distribution. For this model, there is no

closed-form expression for any relevant statistic not even for a randomly chosen customer. However,

the complete distribution on any statistic can be obtained for each customer using MCMC methods.

In order to overcome the difficulty of comparing the models, we bring the Pareto/NBD, BG/NBD

and PDO models to the level of the HB model. More exactly, we obtain the complete individual-level

distribution on the behavioral parameters for each model conditional on observed behavior. This

provides great flexibility when computing various individual-level performance metrics.
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3 Models and the Timing of Transactions

In this section, we present the models in technical terms. All models provide a representation of

individual behavior by considering two arrival processes: one on purchase and one on defection.

Individuals are assumed to make transactions according to the purchase process until they defect.

The defection and transaction processes for individual i depend on individual-specific parameters

which we denote by θi . On the population-level, all models specify a heterogeneity distribution for

(the elements of) θi . This distribution is parameterized by hyperparameters which are denoted by ξ.

Below, we give the details for each model, and present expressions for the last transaction timing in

the calibration period and the first transaction timing in the holdout period. The timing expressions

vary depending on the assumptions of the models. To our knowledge, these expressions have not been

presented before.

Table 2 gives a summary of the assumptions and the dominant estimation method for each model.

We distinguish between assumptions on individual behavior and on heterogeneity. All models have

the same assumption on the purchase process of an individual, while active. The models do differ in

the defection process or in the heterogeneity distribution.

Table 2: Model comparison with respect to the assumptions and estimation process

Pareto/NBD BG/NBD PDO HB

Purchase process Poisson Poisson Poisson Poisson
Defection process Exponential Shifted geometric Shifted geometric Exponential
Defection timing Continuous On purchase moments Fixed periods Continuous
Purchase rate distribution Gamma Gamma Gamma

Bi-variate log-normal
Defection rate distribution Gamma Beta Beta
Estimated parameters Hyperparameters Hyperparameters Hyperparameters Hyper & individual par.
Estimation procedure MLE MLE MLE MCMC

Before we present the models, we briefly discuss the general ideas used for calculating the predic-

tions.

3.1 Conditional and unconditional inference

One can use the BTYD models to obtain predictions on different metrics. However, closed-form

expressions for individual-level metrics conditional on the observed data are not always available.

Below we indicate how to calculate such metrics. Suppose we want to predict a particular metric for

customer i , we denote this as metrici . There are two options: to include or not to include the purchase
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history of this customer. The latter case is mainly relevant for in-sample predictions (model validation)

and, the prediction can be seen as a prediction for a randomly chosen customer. We label this as

unconditional inference. The former is relevant for out-of-sample predictions. These predictions are

made conditional on data of the specific customer.

For conditional inference, we need to calculate E[metrici |all data]. We rewrite this expectation as

E[metrici |all data] =

∫

θi

E[metrici |datai ,θi ]π(θi |all data) dθi

=

∫

ξ

∫

θi

E[metrici |datai ,θi ]π(θi |datai ,ξ)π(ξ|all data) dθi dξ,

(1)

where θi denotes the individual-level parameters for individual i and ξ denotes the hyperparameters

associated with the whole customer base in the focal BTYD model. In Sections 3.2 to 3.5, we provide

closed-form expressions for E[metrici |datai ,θi ] for each model. Calculating the integrals in (1) can

still be very complex. However, samples fromπ(θi |all data) can be obtained for all models. If the model

relies on Maximum Likelihood Estimation [MLE], π(ξ|all data) is seen as a point mass at the Maximum

Likelihood estimate ξ̂, and draws are obtained by sampling from π(θi |datai , ξ̂). For BG/NBD and PDO

models, closed-form expressions are available for these conditional densities and we can apply direct

sampling. For the other models, draws from the posterior are obtained using a Metropolis-Hastings

MCMC sampler (Hastings 1970). In general, we approximate the integral for all models using

E[metrici |all data]≈
1

L

L
∑

l=1

E[metrici |datai ,θ (l )i ],

where θ (l )i , l = 1, . . . , L, are draws from the posterior π(θi |all data).

In the case of unconditional inference we need to calculate

E[metrici |all data−i ] =

∫

θi

E[metrici |θi ]π(θi |all data−i ) dθi

=

∫

ξ

∫

θi

E[metrici |θi ]π(θi |ξ)π(ξ|all data−i ) dθi dξ

≈
∫

ξ

∫

θi

E[metrici |θi ]π(θi |ξ)π(ξ|all data) dθi dξ

(2)

where all data−i denotes the available data ignoring the data for individual i . In the last line, we

assume that enough data is available such that the contribution of a single individual to the conditional
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distribution of the hyperparameters can be ignored. In this case we approximate the expectation by

E[metrici |all data−i ]≈
1

L

L
∑

l=1

E[metrici |θ (l )i ].

If hyperparameters are estimated using MLE, θ (l )i denotes a draw from π(θi |ξ̂), with ξ̂ the Maximum

Likelihood estimate. If Bayesian estimation is used, the draws are obtained by first sampling ξ(l ) from

π(ξ|all data) and next sampling θ (l )i from π(θi |ξ(l )).

In the sections below, we present the expressions for the conditional expectation of the timing of the

last in-sample transaction and the next out-of-sample transaction together with the sampling schemes

for the behavioral parameters.

3.2 Pareto/NBD Model

In the Pareto/NBD model, customer i remains active for a stochastic lifetime (t∆,i ) which has an

exponential distribution with rate µi . While active, this customer makes purchases according to a

Poisson process with rate λi . The purchase rate and the defection rate are assumed to be distributed

according to two independent gamma distributions across the population. The distribution for λi

has shape parameters r , and scale parameter α. The shape and scale parameters for µi are s and β ,

respectively.

The parameters of the heterogeneity distributions can be estimated by MLE. The likelihood can be

written in terms of the number of purchases (x i ) and the timing of the last purchase (tx ,i ) for each

customer. This estimation procedure can be quite tedious from a computational perspective as the

likelihood function involves numerous evaluations of the Gaussian hypergeometric function.

Schmittlein, Morrison, and Colombo (1987) presented some key expressions such as the probability

of being active at the end of the calibration period (Ti ) and the expected number of future transactions

in a given time period for both a randomly chosen customer and a customer with past observed data

(x i , tx ,i , Ti ).

The Pareto/NBD model allows us to predict also the timing of the last transaction in the calibra-

tion period and the timing of the first transaction in the holdout period. Given the individual-level

parameters λi and µi , we can obtain the expected timing of the last purchase as

E[tx ,i |λi ,µi , Ti ] =
1− e−µi Ti

µi
−

1− e−(λi+µi )Ti

λi +µi
, (3)
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see Appendix A.1 for the associated derivations. By comparing E[tx ,i |λi ,µi , Ti ], averaged over the

estimated distribution of λi and µi , to the observed timing of the final purchase, we can assess the

model’s fit performance.

To measure the model’s performance on out-of-sample predictions, we can use the timing of the first

purchase in the interval [Ti , T+i ], where T+i marks the end of the out-of-sample period. A complication

here is that a particular customer may not make any purchase in this interval. For example, this

may happen if the customer has defected. In turn, this makes it extremely difficult to compare the

predictions to realizations. We solve this by instead predicting the minimum of the next purchase

timing and T+i ; for individual i this minimum is denoted by t f ,i . If the customer has defected, t f ,i = T+i .

In Appendix A.1, we show that the conditional expectation of t f ,i in the Pareto/NBD model equals

E[t f ,i |x i , tx ,i , Ti ,λi ,µi ] = (1−P[t∆,i > Ti |x i , tx ,i , Ti ,λi ,µi ])T+i

+P[t∆,i > Ti |x i , tx ,i , Ti ,λi ,µi ] (Ti +
1− e−(λi+µi )(T+i −Ti )

λi +µi
), (4)

where P[t∆,i > Ti |x i , tx ,i , Ti ,λi ,µi ] gives the probability that individual i is still active at time Ti . This

probability can be shown to equal

λi

λi +µi e (λi+µi )(Ti−tx ,i )
, (5)

see Schmittlein, Morrison, and Colombo (1987). Note that this probability depends on the time

between the last (in-sample) purchase and Ti . There is still a chance of defection in this period, but,

given the data, a purchase is impossible in that interval.

Sampling of the behavioral parameters for the Pareto/NBD Model

The joint posterior distribution of the behavioral parameters, θi = (λi ,µi ), of the Pareto/NBD model is

characterized by the likelihood function, the independent gamma priors on these parameters, and the

(ML estimates of the) hyperparameters, ξ= (α, r,β , s ):

π(θi |datai ,ξ) =π(λi ,µi |r,α, s ,β ,x i , tx ,i , Ti )

∝ f (x i , tx ,i , Ti |λi ,µi )g (λi |r,α)h(µi |s ,β )

∝
λx i

i

λi +µi
(µi e−(λi+µi )tx ,i +λi e−(λi+µi )Ti )

αr

Γ(r )
λ(r−1)e−αλ

β s

Γ(s )
µ
(s−1)
i e−βµi .

(6)

As mentioned before, among the models that rely on MLE, the Pareto/NBD model is the only one that
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does not have a standard distribution of individual parameters, π(θi |datai ,ξ). A Metropolis-Hastings

algorithm can be used to sample from this posterior density. Details of this sampling algorithm are

presented in Appendix B.

3.3 BG/NBD Model

The BG/NBD model replaces the continuous defection process of the Pareto/NBD model by a discrete

process. Customers can now only drop out at the moment of a repeat transaction. This implies that

the defection process is explicitly dependent on the purchase process.

Jerath, Fader, and Hardie (2011) argue that such a dependency may not be realistic, as heavy buyers

eventually get more opportunities to drop out. However, the advantage of this model is that its

parameters can be estimated more easily. The individual’s purchase process is Poisson with intensity

λi ∼ Γ(r,α) like in the Pareto/NBD model. The dropout probability for individual i is denoted by p i

and follows a beta distribution with shape parameters a and b . The hyperparameters of the BG/NBD

model can be estimated using MLE.

Fader, Hardie, and Lee (2005a) present the expression for the expected number of (future) trans-

actions of each customer, conditioned upon the hyperparameters. In Appendix A.2, we derive the

expected timing of the last in-sample transaction and the next out-of-sample transaction. Again, we

truncate the next future transaction timing to the end of the out-of-sample period (T+i ). The expected

timing of the last in-sample transaction equals

E(tx ,i |Ti ,λi , p i ) =
1

1−p i

�

1− e−λi p i Ti

λi p i
−

1− e−λi Ti

λi

�

, (7)

and the conditional expectation of the timing of the next transaction equals

E(t f ,i |x i , tx ,i , Ti ,λi , p i ) = (1−P[t∆,i > Ti |x i , tx ,i , Ti ,λi ,µi ])T+i

+P[t∆,i > Ti |x i , tx ,i , Ti ,λi ,µi ](Ti +
1− e−λi (T+i −Ti )

λi
). (8)

For this model, the conditional probability of being active at time Ti equals

P[t∆,i > Ti |x i , tx ,i , Ti ,λi ,µi ] = 1−δtx ,i>0
p i e λi (Ti−tx ,i )

1−p i +p i e λi (Ti−tx ,i )
,

where δtx ,i>0 is a 0/1 indicator, which equals 1 if consumer i made a repeat purchase.
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Sampling of the behavioral parameters for the BG/NBD Model

To sample the individual rate parameters of the BG/NBD model, we again make use of ideas from

Bayesian statistics. Directly sampling from the joint conditional distribution of λi and p i is not easy.

However, we can derive the full conditional distributions of λi and p i . We, therefore, propose to use a

Gibbs sampler which successively draws from the conditional distribution of λi given x i , tx ,i , Ti and p i ,

and the conditional distribution of p i given x i , tx ,i , Ti and λi . After convergence, this Markov Chain

generates draws from the joint conditional distribution. Details of the derivations of both distributions

are presented in Appendix B.2. The conditional density of the purchase rate λi is

π(λi |x i , tx ,i , Ti , p i ) =

p i

(tx ,i+α)xi +r

p i

(tx ,i+α)xi +r +
1−p i

(Ti+α)xi +r

ϕx i+r,tx ,i+α(λi )+
1−p i

(Ti+α)xi +r

p i

(tx ,i+α)xi +r +
1−p i

(Ti+α)xi +r

ϕx i+r,Ti+α(λi ), (9)

where ϕx ,β is the density of a gamma distribution with shape parameter x and rate parameter β . The

conditional density of the defection probability p i equals

π(p i |x i , tx ,i , Ti ,λi ) =
a

a +(b +x i −1)e−λi (Ti−tx ,i )
βa+1,b+x i−1(p i )+

(b +x i −1)e−λi (Ti−tx ,i )

a +(b +x i −1)e−λ(Ti−tx ,i )
βa ,b+x i (p i ), (10)

where βa ,b is the density of a beta distribution with parameters a and b . As the distributions are

mixtures of gamma or beta distributions, respectively, sampling from these distributions is straightfor-

ward.

3.4 PDO Model

The most recent BTYD model is the Periodic Death Opportunity (PDO) model. This model is based on

the BG/NBD model, but assumes that a customer may only defect after each τ periods of time. The

defection process is, therefore, no longer linked to purchase occasions and heavy purchasers do not get

more defection opportunities. Jerath, Fader, and Hardie (2011) show that the PDO model can be seen

as a generalization of the Pareto/NBD and the NBD model. If τ becomes very small, the PDO model

approaches the Pareto/NBD model. The PDO model collapses to the NBD model when τ exceeds the

observation period, leaving no dropout possibility for customers.

More precisely, the PDO model assumes that the interpurchase time for individual i has an expo-

nential distribution with parameter λi ∼ Γ(r,α). Customers may defect with a probability of p i after

15



each τ periods, where p i follows a beta distribution with parameters a and b . The PDO model has

four hyperparameters for the heterogeneity distributions and the additional period length parameter

τ. MLE can again be used to estimate the hyperparameters; for more details see Jerath, Fader, and

Hardie (2011).

The introduction of the τ parameter complicates the prediction of the timing of the last and the

next transactions. Ti is likely not a multiple of τ, and we need to deal with the delay between the last

opportunity to defect before Ti and, for the computation of the expected first future transaction, the

delay between Ti and the first opportunity to defect after Ti . A further complication is the possibility

that there is no defection opportunity during (Ti , T+i ]. Details of the derivations are presented in

Appendix A.3. The expected time of the last transaction in the in-sample period is

E(tx ,i |Ti ,λi , p i ) =
Ni
∑

n=1

p i (1 − p i )n−1

�

nτ−
1− e−nλiτ

λi

�

+ (1 − p i )Ni

�

Ti −
1− e−λi Ti

λi

�

, (11)

where Ni equals the number of defection opportunities, that is, Ni = bTi /τc. The expected time of the

first purchase in the out-of-sample period (Ti , T+i ] is

E(t f ,i |x i , tx ,i , Ti ,λi , p i , T+i ) = (1−p+i )T
+

i +p+i

�

(Ti +
1

λ i
)e−λi Ti − (T̄i +

1

λ i
)e−λi T̄i +δT+i <(Ni+1)τT+i e−λi (T+i −Ti )

+δT+i ≥(Ni+1)τ



e−λi ((Ni+1)τ−Ti )p i T+i +(1−p i )
�

(Ni +1)τ+E(t +|λi , p i , T+i − (Ni +1)τ)
�







 , (12)

where T̄i is the minimum of the first defection opportunity in the out-of-sample period for customer i

and T+i , that is, T̄i =min((Ni +1)τ, T+i ). Furthermore, p+i is shorthand notation for the conditional

probability that individual i is active at time Ti . This probability is given by

p+i =P(t∆,i > Ti |x i , tx ,i , Ti ,λi , p i ) =
(1−p i )Ni e−λi Ti

p i e−λiτ
∑Ni

n=mx ,i

�

(1−p i )e−λiτ
�n−1

+(1−p i )Ni e−λi Ti

where mx ,i is the first opportunity to defect after tx ,i , that is, mx ,i =
� tx ,i

τ
+1
�

and we define
∑b

n=a (·) = 0

whenever a >b . Finally, E(t +|λi , p i , T+i − (Ni +1)τ) is the expected value of the minimum of the time

of the first transaction in (0, T+i − (Ni +1)τ) and (T+i − (Ni +1)τ). The expression for this expectation is

given in Equation (36) of the appendix.
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Sampling of the behavioral parameters for the PDO Model

To sample λi and p i , we again propose a Gibbs sampler; see Appendix B.3 for the details. Conditional

on the data and p i , λi follows a mixture of gamma distributions, that is,

π(λi |x i , tx ,i , Ti , p i ) =
Ni
∑

n=mx ,i

w (n )x i ,p i

Wx i ,tx ,i ,p i

ϕx i+r,α+(n−1)τ(λi )+
w (Ni+1)

x i ,p i

Wx i ,tx ,i ,p i

ϕx i+r,α+Ti (λi ) (13)

where Wx i ,tx ,i ,p i =
∑Ni+1

n=mx ,i
w (n )x i ,p i , and

w (n )x i ,p i
=











p i
(1−p i )n−1

(α+(n−1)τ)xi +r if 1≤ n ≤Ni

(1−p i )Ni

(α+Ti )xi +r if n =Ni +1 .

The conditional distribution of p i is a mixture of beta distributions, that is,

π(p i |x i , tx ,i , Ti ,λi ) =
Ni
∑

n=mx ,i

v (n )λ
Vtx ,i ,λi

βa+1,b+n−1(p i )+
v (Ni+1)
λi

Vtx ,i ,λi

βa ,b+Ni (p i ) (14)

where Vtx ,i ,λi =
∑Ni+1

n=mx ,i
v (n )λi

, and

v (n )λi
=











B (a +1,b +n −1)e−λ(Ti−(n−1)τ) if mx ,i ≤ n ≤Ni

B (a ,b +Ni ) if n =Ni +1,

where B (·, ·) is the beta function. Note that the value Vtx ,i ,λi depends on the data only through mx ,i .

3.5 Hierarchical Bayes Extension of the Pareto/NBD Model

The models presented above do not allow the individual-level parameters to be correlated and they

do not take into account customer characteristics. In many cases, individual-level characteristics

are available and may be useful in predicting customer behavior. Abe (2009a), therefore, proposes a

Hierarchical Bayes [HB] extension of the Pareto/NBD model in which the individual-level parameters

follow a bivariate log-normal distribution. The mean of this distribution may depend on customer

characteristics.

The disadvantage of this extension is that closed-form expressions for interesting metrics, such as

the expected number of purchases, are no longer available. Besides, MLE can no longer be straight-
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forwardly used to obtain parameter estimates. Abe proposes the use of Markov chain Monte Carlo

[MCMC] techniques to estimate the (hyper)parameters and to calculate various metrics.

Abe (2009a) makes the same individual-level assumptions as in the Pareto/NBD model, but assumes

that (logλi , logµi )∼N (w iβ ,Γ), where w i is a 1×K vector of individual characteristics, including an

intercept. In case no covariates are available, the distribution reduces to N (β ,Γ). Γ is not restricted to

a diagonal matrix and, therefore, this model allows the individual-level parameters to be correlated.

The joint density of the data and all parameters forms the basis for the inference. This density is

given by

π({x i , tx ,i , Ti ,λi ,µi }Ni=1,β ,Γ) =
N
∏

i=1

�

π(x i , tx ,i |λi ,µi )π(λi ,µi |β ,Γ)
�

π(β ,Γ) .

Here π(β ,Γ) is the prior distribution of the population-level parameters β and Γ. The standard

conjugate prior is used, that is, β ∼ N (β0, Ao) and Γ follows an inverted Wishart distribution with

parameters (ν0, Γ0). As the individual-level behavioral assumptions of the HB model are identical to

the Pareto/NBD model, conditional on λi and µi , all timing related expressions are the same. Draws

for the individual-level parameters are a natural by-product of the MCMC sampler.

Abe (2009b) proposes an extension of the HB model by adding the amount of spending. Hereby, the

individual parameter vector, θi , extends to three dimensions, including the rate of average log-spending

of customers, (logλi , logµi , logηi ). We also include this extension in our empirical study. Consequently,

we consider four different configurations of the HB model. The first configuration (HB1) represents the

HB model without any covariates and without spending. The second configuration (HB2) incorporates

only the customer-specific covariates. The third and fourth configurations represent the HB models

with the average spending parameter, and without or with covariates, respectively.

Sampling of the hyperparameters and the behavioral parameters for the HB Model

We use MCMC for inference on the hyperparameters and the individual parameters for the HB models.

More specifically, we use a Metropolis within Gibbs sampler (see Hastings (1970)). The sampler uses

the latent variables z i and tδ,i , where z i is the binary variable representing whether customer i is

active (z i = 1) or inactive (z i = 0) at the end of the calibration period; and if already inactive, tδ,i is the

defection time (see Abe (2009a)). As our sampler differs from the one presented in Abe (2009a), we

present the main steps of the sampler:

[0] Set initial value for θi , i = 1, . . . , N .
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[1a] Generate z i |tx ,i ,x i , Ti ,θi according to the being active probability given in Equation (5), for

i = 1, . . . , N .

[1b] If z i = 0, generate tδ,i |tx ,i ,x i , Ti , z i ,θi using an exponential distribution truncated to (tx ,i , Ti ).

[2] Generate β ,Γ|{θi }Ni=1 using a standard multi-variate normal regression update (see Rossi, Allenby,

and McCulloch (2005, Page 34)).

[3] Generate θi |tx ,i ,x i , Ti , z i , t∆,i ,β ,Γwith a Gaussian random-walk MH algorithm, for i = 1, . . . , N .

The step size in the random-walk MH algorithm is set by applying an adaptive MH method in the

burn-in phase (Gilks, Richardson, and Spiegelhalter 1996).

4 Data

We compare the performance of the presented models on three datasets. Below, we briefly discuss

these three datasets.

The first dataset contains daily transaction data of an online grocery retailer in the Netherlands. We

base our analysis on a random set of 1460 customers who started buying from the company in January

2009. We ignore all Sundays as the company does not provide delivery on that day. The available data

contains the initial and the repeat purchase information of each customer over a period of 309 days.

To estimate the model parameters, we use the transaction data of all customers over the first 154 days,

leaving a 155 day holdout period for model validation.

The second dataset is the commonly used CDNOW data. This publicly available dataset covers the

transactions data of 2357 customers who made their first transaction in the first quarter of 1997. The

data spans a period of 78 weeks from January 1997 through June 1998. We set the calibration and

holdout periods to 39 weeks each.

The final dataset comes from a Turkish grocery store. This set is also used by Batislam, Denizel, and

Filiztekin (2007) and Jerath, Fader, and Hardie (2011). It contains the transactions of 5479 customers

who made their first purchase between August 2011 and October 2011, covering a period of 91 weeks.

To be consistent with the earlier papers, we use the first 78 weeks for calibration and leave 13 weeks for

validation purposes. Detailed descriptive statistics of all datasets appear in Table 3.

The three datasets have quite different characteristics. Together they span a wide range of pur-

chase and activity patterns. For instance, in the first dataset, the majority of customers are frequent
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Table 3: Descriptive statistics over the three datasets

Online grocer CDNOW Grocer

Number of customers 1460 2357 5479
Available time frame 309 days 78 weeks 91 weeks
Time split (in-sample/out-of-sample) 154/155 39/39 weeks 78/13 weeks
Available time units days weeks/days weeks
Zero repeaters in estimation period (fraction) 174 (0.12) 1,411 (0.60) 2,221 (0.41)
Zero repeaters in holdout period (fraction) 295 (0.20) 1,673 (0.70) 4,577 (0.84)
Zero repeaters in estimation and holdout periods (fraction) 135 (0.09) 1,218 (0.51) 2,179 (0.40)
Number of purchases in estimation period (all) 16,252 2,457 24,840
Number of purchases in holdout period 12,827 1,882 2,907
Average number of purchases

per customer in estimation period (stdev) 11.13 (10.76) 1.04 (2.190) 4.53 (9.17)
Average number of purchases

per customer in holdout period (stdev) 8.79 (10.78) 0.798 (2.057) 0.53 (1.72)
Average length of the observation period (T ) (stdev) 143.76 (7.39) 32.72 (3.33) 22.81 (26.87)
Average recency as a fraction of T ((T − tx )/T ) 0.27 0.79 0.67

customers, whereas the other two datasets include a large group of incidental buyers. Although the

first two datasets both deal with online retailers, the industries in which these retailers operate are

different, namely groceries versus CDs. We see a clear difference in the customer’s loyalty to the firm;

the average frequency of shopping per customer is higher at the grocery retailer than at the CD retailer.

The fraction of customers without a repeat purchase (zero-repeat buyers) is also much smaller for the

online grocer compared to CDNOW. A customer’s final observed purchase tends to be close to the end

of the sample for the online retailer. This is reflected in the last row of Table 3, which gives the average

recency normalized by the average observation period.

Customer behavior at the brick-and-mortar grocer is quite different compared to that at the online

grocer. Contrary to the general claim in the literature, the customers of the online grocer are more

loyal to the company than those of the grocer chain. The rate of zero-repeat buyers in the grocer’s

data base is considerably higher, and the average normalized recency is significantly lower than for

the online grocer. In what follows, we relate the performance of the models on three datasets to their

characteristics.
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5 Empirical Findings

We split this section in two parts. First, we discuss the parameter estimates for all models and datasets1.

Next, we focus on the predictive performance of the models, where we distinguish between (1) ex-

pected number of transactions; and (2) expected timing of transactions. We especially focus on

the performance of the models in predicting the timing of the last in-sample purchase and the first

out-of-sample purchase.

For the online retailer datasets (online grocer and CDNOW), covariate data on the average number

of shopping items per customer is available. This data is used in the HB model configurations HB2

and HB4. As both datasets also have individual-level spending information, the spending extension of

the HB models (HB3 and HB4) can be applied as well. We mean-center the covariate (average number

of items in the shopping basket) so that the mean of the behavioral parameters, θi , given average

covariate values will be entirely determined by the intercept. As no covariate nor spending information

is available for the third dataset (grocer), only the HB1 model can be used. For all HB models, the

MCMC steps were repeated 256, 000 iterations, of which the last 32, 000 were used to infer the posterior

distribution of parameters. Convergence was monitored visually and checked with the Geweke test on

all datasets (Geweke et al. 1991).

5.1 Parameter estimates

Maximum Likelihood-based models

First we present the parameter estimates that are based on ML estimation; namely for the Pareto/NBD,

BG/NBD, and PDO models. Using the estimates, we can get insight in the degree of heterogeneity

in each customer base as well as in some key quantities for a random customer. Table 4 reports the

estimated hyperparameters for the online grocer. According to the Pareto/NBD model a random

customer makes 0.072 transactions per day while active. Note that this statistic cannot be calculated

directly from the data as it intrinsically contains the condition of being active. The shape parameter

(r = 0.958) indicates a moderate level of heterogeneity in purchase rates across customers (Schmittlein,

Cooper, and Morrison 1993). For this dataset, the PDO model fits best when the period length τ is set

to about 20 days. The parameters related to the purchase process in the PDO model are very similar to

those in the Pareto/NBD model. The BG/NBD model also gives a very similar result for the purchase

1All calculations are performed using MATLAB R2011b.
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rate of an average customer while active (0.071 purchases). The relatively small shape parameter value

(r = 0.897) indicates slightly more differences in purchase rates across customers within the BG/NBD

model.

Table 4: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Estimates - online grocery
retailer

Pareto/NBD BG/NBD PDO (τ= 20.001)
r 0.96 r 0.90 r 0.94
α 13.35 α 12.64 α 13.13

r/α 0.072 r/α 0.071 r/α 0.071
s 0.04 a 0.03 a 0.04
β 38.24 b 3.00 b 2.18

s/β 0.001 a/(a+b) 0.010 a/(a+b) 0.018
log-likelihood -49,208 log-likelihood -49,212.3 log-likelihood -49,201.4

The estimated average defection rate for the Pareto/NBD model is given by s/β = 0.001. As the shape

parameter s is less than 1, the expected lifetime value of a random customer from the cohort diverges

to infinity. From another perspective, half of the customers in the cohort defect after (21/s − 1)β =

383,014,675 days. This shows that a short-term measure rather than these long lifetime estimations

would be more useful for a manager. The probability of a random customer defecting in the next day is

only 1− e−s/β = 0.001. In other words, it is highly unlikely that such a customer will drop out in the

near future. However, the very small value of s suggests that there is a very large dispersion in defection

rates.

The estimation results for the CDNOW data are given in Table 5. We obtain the same parameter

estimates as Fader, Hardie, and Lee (2005a). We find that an average customer makes around 0.05

transactions per week, while active. The small shape parameter value indicates substantial differences

in purchase rates across customers. Similar to the previous dataset, the heterogeneity on defection

rates is extremely high on this dataset (s = 0.606 in the Pareto/NBD model) and the expected lifetime

value of a random customer from the cohort diverges to infinity.

When applying the models on the Turkish grocery dataset, we find that while active, an average

customer places approximately 0.1 orders per week; see Table 6. The population is quite heterogeneous

in purchase rates. The heterogeneity is even greater according to the BG/NBD model. For an in-depth

discussion on the customer lifetime, we recommend the discussion in Jerath, Fader, and Hardie (2011).
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Table 5: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Estimates - CDNOW

Pareto/NBD BG/NBD PDO (τ= 3.001)
r 0.55 r 0.24 r 0.52
α 10.58 α 4.41 α 10.40

r/α 0.052 r/α 0.055 r/α 0.05
s 0.61 a 0.79 a 0.43
β 11.66 b 2.43 b 2.61

s/β 0.052 a/(a+b) 0.246 a/(a+b) 0.142
log-likelihood -9,595 log-likelihood -9,582.4 log-likelihood -9,585.6

Table 6: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Estimates - grocery
retailer

Pareto/NBD BG/NBD PDO (τ= 1.001)
r 0.48 r 0.28 r 0.46
α 4.38 α 2.34 α 4.38

r/α 0.11 r/α 0.12 r/α 0.105
s 0.57 a 0.40 a 0.62
β 17.60 b 2.09 b 22.19

s/β 0.033 a/(a+b) 0.161 a/(a+b) 0.027
log-likelihood -67,925.8 log-likelihood -68,008.3 log-likelihood -67,757.3

MCMC-based models

In order to apply the HB models we first need to set the prior distributions. In many contexts, the prior

is set diffuse enough so that it does not affect the posterior. In other words, the prior variance is set to

a very large value. For the prior on Γ, we initially use ν0 = J +3 and Γ0 = ν0 I , where J represents the

number of behavioral parameters of a customer (see Rossi, Allenby, and McCulloch (2005, Page 30)).

This is an extremely spread prior. However, in case limited data per individual is available, such a prior

may have a strong impact on the posterior. Indeed, looking at the likelihood function for the HB model

given in Equation (37), it can be seen that the likelihood for a zero-repeat buyer (x i = 0= tx ,i ) tends to

1 as µ approaches∞ for any value of λ. Therefore, without a proper prior the posterior does not exist.

The prior needs to ensure that the posterior density for large values for µ approaches 0 quickly enough.

Very diffuse priors fail to deliver this property, leading to (very) unstable estimates.

Among the datasets in our study, the CDNOW dataset is unique in terms of having a very large

proportion of zero-repeat buyers. In other words, the data does not provide much information.

We, therefore, need to set a relatively informative prior for this dataset. Accordingly, we choose

ν0 = J +30 and Γ0 = ν0 I . In this way, extreme estimates are avoided and population-level estimates
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are reasonable2. Still, we have experimented with a diffuse prior on this dataset. A detailed look at the

results per individual (not reported) reveals that there are indeed extreme values for some parameters

(in a range of 5.108). We also observe very different predictions for individuals with a history of zero-

repeat transactions, following the reasoning stated above. A further elaboration on the selection of the

prior parameters on the CDNOW dataset is given in Appendix C.

The hyperparameters of the HB models are not directly comparable to the hyperparameters of

the other BTYD models, not only because of the different heterogeneity distribution (log-normal

distribution versus gamma and beta distributions), but also because the multi-variate structure of the

log-normal distribution allows correlation between parameters for a single customer. Table 7 gives

the median and the mode of the posterior mean of behavioral parameters across customers in each

dataset. It is interesting to note that the location of the population distribution in the HB models

seems to be different to that for the other models. In the next section, we investigate whether this has

an impact on the models’ performance.

Table 7: Median and mode of the behavioral rates of HB model estimates

HB1 HB2 HB3 HB4
λ µ λ µ λ µ λ µ

online grocer
median 0.0474 0.0008 0.0471 0.0008 0.0479 0.0002 0.0479 0.0003
mode 0.0204 0.0003 0.0233 0.0004 0.0086 0.0001 0.0085 0.0001

CDNOW
median 0.0045 0.0129 0.0072 0.0170 0.0081 0.3834 0.0089 0.5117
mode 0.0045 0.0132 0.0073 0.0019 0.0080 0.0006 0.0083 0.0004

grocer
median 0.0469 0.0568 - - - - - -
mode 0.0464 0.0080 - - - - - -

5.2 Unconditional predictions

We follow the procedure described in Section 3.1 to obtain unconditional predictions. As individuals

in the customer database make their first purchases at different times, the time span T varies across

customers. Consequently, we obtain different in-sample predictions for different values of T . We

calculate the unconditional predictions for each of the Ti values in the database and average over

them. These predictions are only based on the population-level parameters, estimated using all the

data in the customer base. Hence, they serve as good indicators of the model’s ability to fit the overall

data pattern. Table 8 shows some statistics on the unconditional expectations on the number of

2With a more diffuse prior, an extremely large number of iterations is needed to obtain accurate estimates of posterior
quantities as the posterior variance will be very large.
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transactions and the timing of the last transaction for each model and each dataset. The first row

shows the statistics based on the observed values for each dataset.

The mean predictions for the HB models are very different from the other model predictions on

CDNOW data3. However, the predicted values are much closer to the median and mode of the data. In

other words, it seems that the large number of zero-repeat buyers pulls the predictions from the HB

models towards smaller values. This is probably due to the shape of the population distribution. As

can be seen in Table 4, the mode for the population distributions of λi and µi are at 0. The log-normal

distribution does not allow for a mode at 0 without also pulling the mean towards 0 (or having an

extreme variance). This explains why the mean predictions for the HB models are pulled towards 0.

For the other datasets, the percentage of zero-repeat buyers is not as large, therefore this phenomenon

is not observed there.

Table 8: Average of unconditional expectations versus observed quantities in calibration period

Number of transactions Time of last transaction
mean median mode mean median mode

o
n

li
n

e
gr

o
ce

r

True 10.132 6 0 105.421 128 0
Pareto/NBD 7.926 8.000 8.300 76.786 77.831 78.410

BG/NBD 6.593 6.647 6.970 57.841 58.571 61.670
PDO 9.789 9.884 10.360 104.217 105.574 111.540
HB1 10.573 10.694 11.150 103.157 104.419 110.650
HB2 10.707 10.826 11.320 106.048 107.289 113.780
HB3 11.231 11.341 11.290 101.139 102.482 107.830
HB4 11.139 11.256 11.360 101.662 102.942 104.270

C
D

N
O

W

True 1.042 0 0 6.864 0 0
Pareto/NBD 1.071 1.071 1.100 6.804 6.790 6.860

BG/NBD 1.058 1.057 1.000 6.913 6.889 7.760
PDO 1.079 1.078 1.150 6.915 6.900 6.540
HB1 0.227 0.227 0.220 2.884 2.862 3.090
HB2 0.245 0.244 0.230 3.020 2.997 2.590
HB3 0.232 0.231 0.220 2.900 2.880 3.410
HB4 0.235 0.235 0.220 2.953 2.926 2.690

gr
o

ce
r

True 4.534 1 0 22.805 7 0
Pareto/NBD 4.462 4.443 4.320 22.589 22.411 21.850

BG/NBD 4.240 4.222 4.150 23.951 23.731 23.000
PDO 4.424 4.403 4.290 22.841 22.667 22.110
HB1 4.839 4.816 4.700 22.485 22.313 21.910

We also provide some performance measures for the number of in-sample transactions (x ) and the

time of the last in-sample transaction (tx ) for each model. Table 9 shows the in-sample Mean Squared

Error (MSE), Mean Absolute Error (MAE) on all predictions and Mean Error on the over- (ME+) and

underpredicted (ME−) observations for all models on the three datasets. At a first glance, all models

3Note that the mean unconditional predictions move even further away with the most diffuse prior. For example, it becomes
0.09 for the HB2 model, see Table 15.
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have a similar fit when predicting x . The PDO model performs slightly better with respect to MSE

on the CDNOW and the grocery data. The estimated hyperparameters for this model lead to a low

probability of extreme values on these datasets. On the other hand, the HB model fits the best in terms

of MSE on the online grocery dataset. In terms of absolute errors in the unconditional predictions of x ,

the BG/NBD model has the best fit for the online grocer and the grocer data.

The HB models perform well on the CDNOW dataset in terms of the MAE. The high MSE and the

low MAE values for the HB models on CDNOW link back to our earlier discussion. The high number

of zero-repeat buyers in this dataset causes the predictions to move towards the mode of the data.

Consequently, on this dataset, the mean of the unconditional predictions of the HB models approaches

the strong mode of the data. This fact leads to a low MAE for the HB models. All models show an

asymmetry in the unconditional prediction error. If the forecast is too high, the error tends to be

relatively small.

The Pareto/NBD, BG/NBD and PDO models have a very similar performance when predicting the

last purchase time on the CDNOW dataset. The PDO and the HB are the best performing models

with respect to the unconditional predictions on this measure for the CDNOW and the online grocer

datasets (considering the MSE and the MAE, respectively). On the grocer dataset, all models have a

similar fit on predicting tx , except the BG/NBD model which fits slightly worse on this metric.

Among the different configurations of HB models, we see that inclusion of covariates generally

causes a slight increase in model fit on both measures. On the other hand, adding the spending

parameter into the estimation procedure leads to a slight decrease in model fit for the frequency and

the timing of in-sample transactions on the online grocer data.

5.3 Conditional predictions

In this section, we consider individual-level predictions conditional on the individual’s history. As

discussed in Section 3.1, for some metrics of interest, obtaining closed-form expression conditioned

on an individual’s history and hyperparameters can be extremely cumbersome because of the integral

in Equation (2). We, therefore, first obtain draws for the individual’s behavioral parameters from the

posterior densities and next calculate the expected value of the metrics of interest by averaging over

these draws. For the Pareto/NBD model, we use a Gaussian random-walk MH sampler to obtain draws

of individual parameters conditional on the hyperparameters. To satisfy convergence, we repeat the

26



Table 9: In-sample predictive performance for unconditional predictions of the number of transactions
(x ) and the time of last transaction (tx )

x tx in weeks
MSE MAE ME+ ME− MSE MAE ME+ ME−

o
n

li
n

e
gr

o
ce

r

Pareto/NBD 116.636 7.803 4.847 11.841 90.526 8.926 9.106 8.873
BG/NBD 124.992 7.725 4.096 11.516 131.352 10.809 7.560 11.573

PDO 111.038 8.123 6.367 10.880 66.809 6.774 10.523 5.071
HB1 110.832 8.302 6.923 10.666 67.110 6.852 10.598 5.205
HB2 110.910 8.335 7.009 10.647 66.822 6.664 10.672 4.803
HB3 111.485 8.473 7.371 10.513 67.495 6.986 10.430 5.505
HB4 111.323 8.442 7.292 10.559 67.337 6.949 10.466 5.427

C
D

N
O

W

Pareto/NBD 4.789 1.282 0.886 2.411 114.655 8.899 6.353 14.758
BG/NBD 4.788 1.276 0.879 2.377 114.640 8.942 6.462 14.647

PDO 4.786 1.286 0.888 2.446 114.610 8.940 6.455 14.683
HB1 5.455 1.087 0.227 2.370 130.332 7.547 2.772 16.282
HB2 5.426 1.090 0.244 2.352 129.251 7.586 2.895 16.282
HB3 5.448 1.088 0.231 2.365 130.195 7.551 2.787 16.265
HB4 5.442 1.089 0.235 2.362 129.796 7.567 2.835 16.271

gr
o

ce
r Pareto/NBD 83.958 5.454 3.554 11.381 719.044 24.024 19.359 31.472

BG/NBD 84.097 5.341 3.342 11.503 720.197 24.341 20.457 30.755
PDO 83.949 5.435 3.517 11.413 719.137 24.082 19.571 31.323
HB1 84.081 5.650 3.900 11.298 719.229 24.001 19.274 31.532

iterations 300,000 times, of which only the last 10,000 iterations were used4. For the BG/NBD and PDO

models, we use a two-step Gibbs algorithm with 30,000 iterations, of which only the last 8,000 draws

are used.

For metrics like the transaction frequency of a customer with history (x i , tx ,i , Ti ), closed-form

expressions for the Pareto/NBD, BG/NBD and PDO models are available conditional on both hyperpa-

rameters and behavioral parameters. This allows us to test our procedure based on the posterior draws

on individual’s parameters. We compare our simulation-based predictions to the results computed

by the closed-form expressions conditioned on hyperparameters given in Schmittlein, Morrison, and

Colombo (1987), Fader, Hardie, and Lee (2005a) and Jerath, Fader, and Hardie (2011). In all cases, the

correlation between the expectations is more than 99.995%.

We consider the number of transactions in the out-of-sample period as well as the timing of the first

out-of-sample transaction. More precisely, with the timing of the first out-of-sample transaction, we

mean the minimum of the timing of the next transaction and the end of the out-of-sample period. We

use MSE, MAE and the correlation between predicted and observed values. As the above measures do

not distinguish between over- and underpredictions, we also provide the mean over all positive errors

(ME+: overprediction) and the mean over all negative errors (ME−: underprediction).

4We use an extreme number of burn-in iterations, in practice convergence is achieved much earlier.
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5.3.1 Predicting future transaction frequency

Table 10 summarizes the predictive performance on the number of future transactions. The HB models

perform best in terms of the MSE, MAE and correlation measures on the grocer and the online grocer

datasets. Taking into account that the covariate information works well for the online grocer, the HB2

model performs, consequently, the best among the HB models. For this model, the coefficient of the

average number of items in the shopping basket is significant at the 5% level (based on the highest

posterior density [HPD] interval). Adding the average spending worsens the out-of-sample predictions

on transaction frequency. Therefore, the HB3 and HB4 models do not perform as well.

The good predictive performance of the HB model can be explained by the relaxation of the inde-

pendence assumption in the heterogeneity distribution. Note that the HB and the Pareto/NBD models

share the same individual-level assumptions. To further investigate the dependence, we take a look at

the estimated correlations between purchase and defection rates. As emphasized by Abe (2009a), it

makes most sense to look at the estimated correlations for the no-covariate configuration of the HB

models (HB1 and HB3). Table 11 reports the posterior mean correlations for each pair of parameters on

each dataset for the HB3 model, together with the highest posterior density regions (Hyndman 1996).

We find a strong and significant negative correlation between purchase and defection rates for the

online grocery data. Accordingly, we see a remarkable improvement on the prediction performance of

the HB models on this dataset. We find a significant, but relatively smaller, negative correlation on

the grocery data. The HB1 model performs only slightly better than the other models on this data.

There is no significant correlation between the purchase and defection rates for the CDNOW dataset,

and consequently, the Pareto/NBD model is the best predicting model with its more flexible gamma

heterogeneity distribution.

The final two columns in Table 10 summarize the model’s performance with regard to over- (ME+)

and underpredictions (ME−). We find that for the Pareto/NBD model, the magnitude of underpredic-

tions is bigger than that of overpredictions on all datasets. For the other models, the difference between

ME+ and ME− depends on the data. The average underprediction is always larger than the average

overpredictions on the CDNOW and grocery retailer datasets. It is exactly the other way around for the

online grocer data, where the customers are relatively more loyal to the company. To further elaborate

on this, we construct Table 12. This table presents summary statistics on the group of observations

that are under- or overpredicted. We list the size of the group, mean values of the purchase frequency

(x ) and the recency (T − tx ) in the calibration period, observed frequency in the holdout period (x ∗)
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Table 10: Model’s prediction performance on the number of transactions

Correlation MSE MAE ME+ ME−

o
n

li
n

e
gr

o
ce

r

Pareto/NBD 0.9207 21.556 3.055 2.344 3.830
BG/NBD 0.9195 20.840 2.996 3.253 2.340

PDO 0.9169 21.219 3.047 3.347 2.343
HB1 0.9243 18.807 2.806 3.008 2.363
HB2 0.9250 18.543 2.779 2.941 2.419
HB3 0.9218 20.242 2.942 3.089 2.530
HB4 0.9221 20.168 2.934 3.075 2.538

C
D

N
O

W

Pareto/NBD 0.6304 2.568 0.754 0.429 1.866
BG/NBD 0.6248 2.589 0.787 0.456 1.831

PDO 0.6214 2.709 0.903 0.696 1.737
HB1 0.6235 2.962 0.717 0.209 2.083
HB2 0.6127 2.954 0.736 0.253 2.054
HB3 0.6241 2.743 0.680 0.234 2.090
HB4 0.6223 2.740 0.678 0.236 2.095

gr
o

ce
r Pareto/NBD 0.8230 0.954 0.398 0.242 1.615

BG/NBD 0.8216 0.966 0.416 0.265 1.602
PDO 0.8189 0.983 0.460 0.317 1.591
HB1 0.8238 0.951 0.394 0.239 1.600

Note that ME+ and ME− give the average of over- and underpredictions
over the groups

Table 11: 95% Highest Posterior Density Region and mean of correlations between behavioral rates

ρθλθµ ρθλθη ρθηθµ
HPDR mean HPDR mean HPDR mean

online grocer -0.718 -0.297 -0.501* 0.694 0.770 0.732* -0.765 -0.687 -0.730*
CDNOW -0.215 0.197 -0.011 0.235 0.421 0.332* -0.729 -0.675 -0.703*
grocer -0.259 -0.115 -0.184* - - - - - -

* Indicates that 0 is not contained in the 95% HPDR (highest posterior density region).

and predictions (E[x ]) for both groups. All models overpredict the transaction frequency, x , for the

majority of customers in each datasets. In general, the overprediction occurs for those customers with

a low transaction frequency and a long recency; and vice versa for the underprediction. In other words,

the BTYD models overestimate transaction frequency for incidental buyers and underestimate it for

frequent buyers.

We next study the relation between the prediction error and the number of in-sample purchases.

The plots in Figure 1 show the average predicted number of out-of-sample purchases as a function of

the number of in-sample purchases. Figure 2 gives the MAE as a function of the number of in-sample

purchases. To be able to focus on the main differences between the model classes, we do not show the
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Table 12: Statistics on the groups of over- and underpredictions of future transaction frequency

Overpredicted observations Underpredicted observations

ME+ cus. % x (T − tx ) x ∗ E[x ] ME− cus. % x (T − tx ) x ∗ E[x ]

o
n

li
n

e
gr

o
ce

r

Pareto/NBD 2.344 52 6.593 8.855 3.138 5.482 3.830 48 13.984 3.705 14.934 11.104
BG/NBD 3.253 72 8.912 6.887 6.072 9.325 2.340 28 13.243 5.119 15.710 13.371

PDO 3.347 70 8.730 7.030 5.795 9.142 2.343 30 13.412 4.889 15.787 13.444
HB1 3.008 69 8.909 6.998 5.917 8.925 2.363 31 12.806 5.058 15.061 12.698
HB2 2.941 69 8.961 7.037 5.993 8.934 2.419 31 12.733 4.949 14.993 12.574
HB3 3.089 74 8.908 6.599 6.172 9.261 2.530 26 13.560 5.802 16.109 13.580
HB4 3.075 74 8.944 6.573 6.212 9.287 2.538 26 13.482 5.872 16.047 13.509

C
D

N
O

W

Pareto/NBD 0.429 77 0.851 27.303 0.170 0.598 1.866 23 1.695 20.977 2.946 1.079
BG/NBD 0.456 76 0.813 27.698 0.144 0.600 1.831 24 1.764 20.113 2.859 1.028

PDO 0.696 80 0.913 26.942 0.216 0.912 1.737 20 1.564 21.567 3.136 1.399
HB1 0.209 73 0.631 28.748 0.041 0.250 2.083 27 2.116 18.666 2.836 0.753
HB2 0.253 73 0.639 28.672 0.046 0.299 2.054 27 2.111 18.760 2.853 0.798
HB3 0.234 76 0.733 27.811 0.108 0.342 2.090 24 1.982 20.343 2.977 0.887
HB4 0.236 76 0.742 27.744 0.115 0.351 2.095 24 1.968 20.477 2.988 0.893

gr
o

ce
r Pareto/NBD 0.242 89 3.516 51.082 0.145 0.387 1.615 11 12.464 17.209 3.533 1.918

BG/NBD 0.265 89 3.573 51.029 0.155 0.420 1.602 11 12.105 17.298 3.489 1.887
PDO 0.317 89 3.541 51.002 0.149 0.466 1.591 11 12.411 17.287 3.561 1.970
HB1 0.239 88 3.404 51.180 0.152 0.391 1.600 12 12.095 17.151 3.450 1.850

results for the HB models including spending and/or covariates.

The PDO model tends to yield higher predictions for CDNOW data. This matches our findings

in Tables 10 and 12. On average, the HB1 model yields the lowest predicted transaction numbers.

Remarkably, this is not reflected in a poor forecasting performance for this model. In fact, Figure 2a

shows that the HB1 model predicts very well for all values of the in-sample number of transactions. For

the grocer dataset, all models show a very similar prediction pattern. Only the PDO model stands out

with its relatively high predictions. Figure 2b shows that this leads to higher MAEs. The Pareto/NBD

model is different from the other models for the online grocer data. This model has the tendency to

underpredict transaction numbers (see also Tables 10 and 12).

The MAE tends to increase with the number of in-sample transaction numbers for the CDNOW and

grocer datasets, contrasting with what is observed for the online grocery data (see Figure 2). The online

grocer dataset stands out with its data center leaning toward frequent buyers. The predictions now

result from models pulling values to this center.
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(a) (b) (c)

Figure 1: Conditional expectation of future transaction numbers on CDNOW, grocer and online grocer
datasets. All plots right-censor the horizontal axis for readability. For CDNOW data, the
group having≥ 7 repeat-purchases corresponds to only 3% of the observations; for the grocer
dataset 9% of the observations are in the group ≥ 15; and for the online grocer 6% are ≥ 26.

(a) (b) (c)

Figure 2: MAE on the number of future transaction predictions on CDNOW, grocer and online grocer
datasets

5.3.2 Predicting future transaction timing

Finally, we consider the performance on predicting future transaction timing5. Table 13 presents an

overview of the main results. Interestingly, the PDO model has a good performance on the CDNOW and

grocer datasets. This model did not perform particularly well on predicting the number of transactions.

Note that the timing of transactions is strongly influenced by the defection process and that the

PDO model specially focuses on this process. Jerath, Fader, and Hardie (2011) demonstrate that the

PDO model allows the defection process to be somewhere in between the extremes implied by the

Pareto/NBD model and the no-defection NBD model. The PDO model performs the worst on the

5We thank Batislam, Denizel, and Filiztekin (2007) and Fader, Hardie, and Lee (2005b) for making the out-of-sample timing
data available.
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online grocer data. One reason may be the long (estimated) defection period interval (τ= 20.001 days).

The HB models also perform rather well on the grocer and online grocer datasets. For both datasets

we found a significant correlation between the behavioral parameters. Among the HB models, a

remarkable point is the improved performance of the HB3 model when taking into account the average

spending amount on CDNOW and online grocer datasets. This can be explained by the existence of

the strong and significant negative correlation between the spending and defection parameters in

both datasets (see Table 11).

Table 13: Model’s prediction performance on the timing of next transaction

Correlation MSE MAE ME+ ME−

o
n

lin
e

gr
o

ce
r

Pareto/NBD 0.7296 46.674 4.508 2.649 5.801
BG/NBD 0.7259 47.173 4.523 2.668 5.792

PDO 0.6780 50.668 5.116 3.152 7.769
HB1 0.7328 43.416 4.223 2.991 5.134
HB2 0.7254 44.374 4.296 3.068 5.210
HB3 0.7201 46.594 4.067 2.973 4.772
HB4 0.7204 46.504 4.073 2.983 4.777

C
D

N
O

W

Pareto/NBD 0.5789 125.451 7.372 17.013 4.027
BG/NBD 0.5750 125.153 8.122 17.027 5.033

PDO 0.5828 123.441 8.517 15.343 6.228
HB1 0.5486 273.555 15.660 10.062 17.051
HB2 0.5449 282.423 15.865 9.781 17.352
HB3 0.5687 270.514 15.408 9.229 16.898
HB4 0.5689 270.028 15.376 9.214 16.850

gr
o

ce
r Pareto/NBD 0.8183 7.684 1.442 4.590 1.182

BG/NBD 0.8192 7.770 1.542 4.551 1.293
PDO 0.8226 7.976 1.734 4.469 1.514
HB1 0.8190 7.602 1.426 4.639 1.171

ME+ and ME− give the average over the groups of overpredictions and
underpredictions

In Table 14, we investigate for what type of observation the purchase time is over- or underpredicted.

We present the size of the over- and underpredicted group, group-specific characteristics in the

calibration period, the average observed timing (t ∗f ) in the holdout period and the average predicted

time (E[t f ]). In line with the previous results, all BTYD models underpredict the timing of the next

purchase for customers who have a low transaction frequency and high recency; and vice versa for the

groups of higher predictions.

In Figure 3, we show the average predictions as a function of the time of the last in-sample transaction

(tx ). Note that the timing predictions are explicitly influenced by tx (see Equations (4), (8), and (12)).
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Table 14: Statistics on the groups of over- and underpredictions of future transactions timing

Overpredicted observations Underpredicted observations

ME+ cus. % x (T − tx ) t ∗f E[t f ] ME− cus. % x (T − tx ) t ∗f E[t f ]

o
n

li
n

e
gr

o
ce

r

Pareto/NBD 2.65 41 11.80 4.47 27.49 30.14 5.80 59 8.97 7.72 37.93 32.13
BG/NBD 2.67 41 11.79 4.49 27.51 30.18 5.79 59 8.99 7.69 37.85 32.05

PDO 3.15 57 13.71 3.38 27.39 30.54 7.77 43 5.30 10.45 42.11 34.34
HB1 2.99 43 11.69 4.61 27.60 30.59 5.13 57 8.97 7.71 38.13 32.99
HB2 3.07 43 11.62 4.57 27.60 30.67 5.21 57 9.03 7.75 38.15 32.94
HB3 2.97 39 11.73 4.86 27.59 30.56 4.77 61 9.10 7.38 37.55 32.78
HB4 2.98 39 11.75 4.85 27.58 30.56 4.78 61 9.09 7.38 37.57 32.79

C
D

N
O

W

Pareto/NBD 17.01 26 2.26 18.52 43.49 60.51 4.03 74 0.62 28.42 71.34 66.31
BG/NBD 17.03 26 2.21 18.80 43.68 60.69 5.03 74 0.64 28.32 71.28 67.25

PDO 15.34 25 2.27 18.46 43.04 58.39 6.23 75 0.63 28.36 71.25 65.03
HB1 10.06 20 2.45 17.60 39.80 49.86 17.05 80 0.69 28.10 70.22 53.17
HB2 9.78 20 2.50 17.40 39.62 49.40 17.35 80 0.69 28.12 70.17 52.82
HB3 9.23 19 2.38 18.29 39.80 49.03 16.90 81 0.72 27.88 70.05 53.15
HB4 9.21 19 2.38 18.33 39.74 48.96 16.85 81 0.72 27.85 70.01 53.16

gr
o

ce
r Pareto/NBD 4.59 8 7.17 23.32 75.03 79.62 1.18 92 4.32 49.21 82.77 81.59

BG/NBD 4.55 8 7.10 23.21 75.05 79.60 1.29 92 4.32 49.22 82.77 81.48
PDO 4.47 7 7.18 22.88 74.81 79.28 1.51 93 4.32 49.18 82.77 81.26
HB1 4.64 8 7.18 23.30 75.03 79.67 1.17 91 4.18 49.23 82.76 81.59

We show the corresponding MAE values in Figure 4. Figure 3a clearly shows that the HB1 model gives

quite different predictions compared to the other models for CDNOW; for HB1 the predictions tend to

be smaller. Based on Figure 4a we conclude that these predictions are too low. The MAE for the HB1

model is the highest among all models. However, for the recent buyers (high tx values) the differences

between the models are relatively small.

For the grocer dataset, we see that all the models, except the PDO model, have almost identical

predictions and performance for the non-recent buyers (see Figures 3b and 4b). The PDO model

has lower predictions and higher MAE for those customers. Again for recent buyers, all models have

very similar predictions so that it is difficult to distinguish between the models for this group of

observations.

For the online grocer data, the PDO model also performs relatively poorly for non-recent buyers

(see Figures 3c and 4c). The PDO model tends to underpredict the timing of the first transaction for

customers who do not have recent transactions. On this data, the majority of customers are frequent

buyers who had recent transactions. For instance, the percentage of customers who have tx ≤ 10

weeks is just 15% and therefore the left hand side of the figure does not have a big weight in the overall

predictive performance of the models for this dataset. However, for the other datasets, a large part of

the dataset have low values of tx (53% of customers have tx ≤ 10 on the grocery dataset and 73% of
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customers has tx ≤ 10 on the CDNOW dataset).

(a) (b) (c)

Figure 3: Conditional expectation of future transaction timing on CDNOW, grocer and online grocer
datasets

(a) (b) (c)

Figure 4: MAE of future transaction timing predictions on CDNOW, grocer and online grocer datasets

6 Discussion

In this paper, our aim is to present a new use of the existing buy-till-you-defect [BTYD]models. In the

current literature, the main focus is on predicting the transaction frequency. We argue that prediction

of the future transaction timing of an individual is also very relevant. For each of the most popular

BTYD models, we develop a method to calculate such predictions.

First of all, these timing predictions are useful to compare the quality of the existing models on an

additional metric. Next, timing predictions have a clear managerial purpose. For example, consider an

online retailer implementing micro-marketing strategies. The most appropriate time to contact its
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customers depends on their expected timing of the next purchase. High quality timing predictions

may contribute to achieving the full potential of micro-marketing (Zhang and Krishnamurthi 2004).

Following the pioneering research by Gupta (1988), there is a growing literature that examines the

effectiveness of promotions on whether to buy, ’when’ to buy, and how much to buy (see the summary

of relevant literature in Gönül and Hofstede (2006)). We believe that using the BTYD models to predict

the timing of transactions provides a new means of answering the ’when’ question.

An operations manager may also use predictions on the timing and transaction value as input for

Revenue Management. For example, online retailers have limited delivery capacity at a given time.

Given the appropriate predictions, operations managers can prioritize valued customers for highly

demanded delivery time slots (Talluri and Van Ryzin 2005). Tereyağoğlu, Fader, and Veeraraghavan

(2012) emphasize the crucial role of having accurate timing predictions to improve revenues. In

summary, we believe that the ability to predict the timing of future transactions can be helpful to

accelerate research on aforementioned topics in industries that operate in a noncontractual setting.

We present a general method and specific formulas that can be used to predict the timing of the

next purchase for four of the established BTYD models. Such formulas have not been presented before.

We use these methods to compare the predictive performance of all models on three very different

datasets. We find that the predictive performance of the models varies not only with the characteristics

of the data, but also with respect to the performance metric.

Managers who aim to forecast their customers’ transaction frequency should first examine general

characteristics of the customer cohort and then choose the best fitting model. The HB models tend

to perform relatively poorly in case data is weak due to many zero-repeat buyers. On the other hand,

they do have a clear advantage if there are many repeat buyers and there are significant correlations

between the behavioral parameters.

The PDO and HB models perform well on the timing of transaction predictions, again conditional

on some data characteristics. Our conclusions on model choice are based on informally relating data

characteristics to forecasting performance on just three datasets. There are studies that attempt to

formally quantify and validate such relations through classification and regression trees and random

forests (Schwartz, Bradlow, and Fader 2012). Such a formal study is very welcome in this context to

arrive at more general recommendations.

By comparing the predictive performance on future frequency versus timing, we found that the

BTYD models perform rather poorly on the latter. A closer focus on the defection process may lead
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to better timing predictions. The ideas of Bueschken and Ma (2012) may be helpful in this context.

They provide a new perspective on possible switches between active and inactive states, and allow

for both regular and incidental buyers by relaxing the Poisson process assumption on the arrival of

transactions.

Appendix A Timing expressions

In this section, we present the derivations of the expected timing of the last transaction, tx , in the observation

period [0, T ] and the expected timing of the next event (either the first purchase or the end of the forecast

interval), t f , conditioned on an individual’s parameters. The hyperparameters do not play a role here. In all

sections of this appendix we drop the i subscript, representing customer i , for notational simplicity. In the

notation we also do not condition on the length of the observational interval T .

Appendix A.1 Timing of transactions for Pareto/NBD and HB models

The derivations in this section apply to the original Pareto/NBD model and its HB extension. The expressions

are the same as both models have the same assumptions on individual behavior. The time of defection, t∆, has

the probability function6

P(dt∆|λ,µ) =µe−µt∆ dt∆ . (15)

Setting tδ =min(t∆, T ), we obtain

P(dtδ|λ,µ) =























µe−µtδ dtδ if 0≤ tδ < T

e−µTδT (tδ)dtδ if tδ = T

0 otherwise,

(16)

where δw (x ) is the Dirac-delta function at w evaluated at x 7. Conditioning on the unobserved value tδ, we find

the density of tx on (0, T ] as

P(dtx |tδ,λ,µ) =
�

λe−λ(tδ−tx )+δ0(tx )e−λtδ
�

dtx , (17)

6We use a rather formal notation here as our stochastic variables have a mixed discrete/continuous distribution. For
practical purposes one can see the part before dt∆ on the right-hand side of (15) as the traditional probability density
function.

7More precisely, δw () is a point mass at w normalized such that for any continuous function g ,
∫

g (t )δw (t ) dt = g (w ).
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where we make use of the memoryless property of the Poisson process. Informally, we can look back in time and

do as if the process starts at tδ. Integrating over tδ, one obtains

P(dtx |λ,µ) =

∫

tδ∈[tx ,T ]

P(dtx |tδ,λ,µ)P(dtδ|λ,µ) =











λ
µe−(λ+µ)tx +λe−(λ+µ)T

λ+µ dtx if 0< tx ≤ T

�

µ

λ+µ +
λe−(λ+µ)T

λ+µ

�

δ0(tx ) dtx if tx = 0 .

(18)

Based on Equation (18), the expected value on the time of the last transaction is calculated as follows,

E(tx |λ,µ) =

∫ ∞

0

tx P(dtx |λ,µ) =
1− e−µT

µ
−

1− e−(λ+µ)T

λ+µ
. (19)

Next, we present the derivations for the predictions of the time of next event from the end of the calibration

period conditional on x and tx : E(t f |x , tx ,λ,µ). Let T+ be some future horizon T+ > T . Consider the first future

transaction after T . We define t f as the time of this occurrence or T+, whichever is first. We have

E(t f |x , tx ,λ,µ) =E(t f |x , tx , z = 1,λ,µ)p++E(t f |x , tx , z = 0,λ,µ) (1−p+),

where z = 1 indicates that a customer is active at time T and

p+ =E(z |x , tx ,λ,µ) =
λ

λ+ e (λ+µ)(T−tx )
. (20)

Consider an active customer. Then the density of the first timing, t , of a transaction on (T,∞) is λe−(λ+µ)(t−T )

and t has a point mass at infinity of µ

λ+µ as defection may have been the first event to happen. Therefore, on the

interval (T, T+] the density of t f given a customer’s transaction data and that the customer is active at time T is

π f (t |x , tx , z = 1,λ,µ) =λe−(λ+µ)(t−T ). The expectation is computed as,

E(t f |x , tx ,λ,µ) = p+
∫ T+

T

tπ f (t |x , tx , z = 1,λ,µ)dt

+p+
 

1−
∫ T+

T

π f (t |x , tx , z = 1,λ,µ)dt

!

T++(1−p+)T+

= T +
µe (λ+µ)(T−tx )

λ+µe (λ+µ)(T−tx )
(T+−T )+

λ

λ+µe (λ+µ)(T−tx )

1− e−(λ+µ)(T+−T )

λ+µ

(21)

Appendix A.2 Timing of transactions for BG/NBD model

In the BG/NBD model, the timing of defection, t∆, is also the timing of the last transaction and its density is

P(dt∆|λ, p ) =λp e−λp t∆ dt∆, (22)
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see Fader, Hardie, and Lee 2005a. It should be noted that the first purchase at time 0 is special in that a customer

cannot defect at time 0. Given that tδ =min(t∆, T ):

P(dtδ|λ, p ) =























λp e−λp tδ dtδ if 0< tδ < T

e−λp TδT (tδ)dtδ if tδ = T

0 otherwise .

(23)

Conditioning on the unobserved value tδ, we find the density of tx as

P(dtx |tδ,λ, p ) =























δtδ (tx )dtx if tδ < T

�

λ(1−p )e−λ(1−p )(T−tx )+ e−λ(1−p )Tδ0(tx )
�

dtx if tδ = T

0 otherwise .

(24)

Integrating over tδ, one obtains the probability

P(dtx |λ, p ) =

∫

tδ∈[tx ,T ]

P(dtx |tδ,λ, p )P(dtδ|λ, p )

=
�

λp e−λp tx +(1−p )λe−λ(T−(1−p )tx )+ e−λTδ0(tx )
�

dtx .

and, therefore

P(dtx |λ, p ) =























λ
�

p e−λp tx +(1−p )e−λT e λ(1−p )tx
�

dtx if 0< tx ≤ T

e−λTδ0(tx )dtx if tx = 0

0 otherwise .

(25)

Using equation (25), the expected value of the time of the last transaction in the observation interval [0, T ] can

be calculated as

E(tx |λ, p ) =

∫ T

0

txλ
�

p e−λp tx +(1−p )e−λT e λ(1−p )tx
�

dtx =
1

1−p

�

1− e−λp T

λp
−

1− e−λT

λ

�

. (26)

For the case x , tx > 0 one easily sees, by referring to the Pareto/NBD result on p+ in Equation (20) under

substituting (1−p )λ for λ and λp for µ, that

p+ =P(z = 1|x , tx ,λ, p ) =







1−p
1−p+p e λ(T−tx ) if x , tx > 0

1 if x = 0= tx .

(27)

The density of the first future transaction given the rates, the observed transaction data and the customer being

active at T is π f (t |x , tx , z = 1,λ,µ) =λe−λ(t−T ). Note that an active customer will always make at least one future
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purchase. The expected value of the first future purchase timing (or T+) is

E(t f |x , tx ,λ, p ) = p+λ

∫ t f =T+

t f =T

t f e−λ(t f −T )dt f +
�

1−p++p+e−λ(T
+−T )

�

T+ (28)

= T +(1−p+)(T+−T )+p+
1− e−λ(T+−T )

λ
. (29)

Appendix A.3 Timing of transactions for PDO model

In the periodic-defection-model (PDO) (Jerath, Fader, and Hardie 2011) the time of defection, t∆, has a discrete

distribution with support {nτ}n=1,2··· which is given as

P(t∆ = nτ|λ, p ) = p (1−p )n−1, (30)

where τ can be treated as a known value (estimated using MLE at the customer base level). Let tδ =min(t∆, T ) be

the time after which no transactions are observed. Given tδ the distribution of the time, tx , of the last observed

transaction in [0, T ] is

P(dtx |tδ,λ, p ) = I [0,tδ](tx )e−λ(tδ−tx ) (λ+δ0(tx ))dtx , (31)

IA is the indicator function of the set A. Note the distribution’s point mass at 0. One computes

P(dtx |λ, p ) =

∫

tδ∈[tx ,T ]

P(dtx |tδ,λ, p )P(dtδ|λ, p )

=

 

N
∑

n=mx

p (1−p )n−1e−λnτ+(1−p )N e−λT

!

(λ+δ0(tx ))e λtx dtx . (32)

where we use the notations N for bT /τc and mx as the time of the first opportunity to defect after or at tx ,

expressed as a multiple of τ, that is, mx =
�

tx

τ
+1
�

. Using (32) together with the observation that in our case, it

holds that
N
∑

m=1

∫

{mx=m }

N
∑

n=m

�

·
�

dtx =
N
∑

n=1

n
∑

m=1

∫

{mx=m }

�

·
�

dtx =
N
∑

n=1

∫ tx=nτ

tx=0

�

·
�

dtx ,

the expected value for the time of the last observed transaction in the interval [0, T ] is found as8

E(tx |λ, p ) =
N
∑

n=1

p (1−p )n−1

�

nτ−
1− e−nλτ

λ

�

+(1−p )N
�

T −
1− e−λT

λ

�

. (33)

Now let us turn to the timing of the first repeat transaction, t1, where, by convention, we set t1 =∞ in case there

is no repeat transaction after the initial transaction at time 0. More in particular, we study t1 capped by the

8For reasons of computational efficiency, in cases where N is a large number, the summation in Equation (33) may be

written as τ
p

�

N (1−p )(N+1)− (N +1)(1−p )N +1
�

− 1−(1−p )N

λ
+ p e−λτ

λ

((1−p )e−λτ)N−1

(1−p )e−λτ−1
.
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observation period’s length, t + =min(t1, T ). Then, by analogy to (31) and (32) we obtain

P(dt +|tδ,λ, p ) =
�

I [0,tδ](t
+)λe−λt + + e−λtδδT (t +)

�

dt + (34)

and

P(dt +|λ, p ) =







N
∑

n=dt +/τe

p (1−p )n−1λe−λt + +(1−p )N






λe−λt + dt +

+

 

N
∑

n=1

p (1−p )n−1e−nλτ+(1−p )N e−λT

!

δT (t +)dt + . (35)

From the density in (35), the expected value for the timing of the first transaction becomes

E(t +|λ, p , T ) =
N
∑

n=1

p (1−p )n−1

�

1− (nλτ+1)e−nλτ

λ

�

+(1−p )N
�

1− (λT +1)e−λT

λ

�

+

 

p e−λτ
1−

�

(1−p )e−λτ
�N

1− (1−p )e−λτ
+(1−p )N e−λT

!

T

or

E(t +|λ, p , T ) = 1/λ



1−
bT /τc
∑

n=1

p (1−p )n−1(nλτ+1)e−nλτ− (1−p )bT /τc(λT +1)e−λT





+

 

p e−λτ
1−

�

(1−p )e−λτ
�bT /τc

1− (1−p )e−λτ
+(1−p )bT /τce−λT

!

T . (36)

This expression for the timing of the first transaction in the calibration period is reused for calculating the timing

of the first future transaction after T , see Equation (12).

Appendix B Estimation procedure for Pareto/NBD, BG/NBD

and PDO models

To calculate the various expectations, we also need draws from the conditional density of the individual-level

parameters. Below we discuss how to obtain such draws for the Pareto/NBD, BG/NBD and PDO model.

For the BG/NBD and PDO models, the relevant parameters are the transaction rate, λ, and the probability

of defection, p , per defection opportunity. Below, we argue that we can easily draw from the full conditional

distributions π(λ|x , tx , p ) and π(p |x , tx ,λ). We rely on Gibbs sampling to obtain draws from the joint conditional

distribution π(λ, p |x , tx ).

For the Pareto/NBD model, sampling from the full conditionals is not straightforward. Therefore, we need to

develop a different method. We propose to use a random-walk Metropolis-Hastings algorithm to obtain draws
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from the individual-level posterior distribution.

Appendix B.1 The Pareto/NBD model

The likelihood function for the Pareto/NBD model is

f (x , tx |λ,µ) =
λx

λ+µ
(µe−(λ+µ)tx +λe−(λ+µ)T ) . (37)

Given the likelihood function and the independent gamma priors on the defection and purchase rates, the joint

posterior distribution of the behavioral parameters can be written as

π(λ,µ|r,α, s ,β ,x , tx )∝ f (x , tx |λ,µ)g (λ|r,α)h(µ|s ,β )

∝
λx

λ+µ
(µe−(λ+µ)tx +λe−(λ+µ)T )λ(r−1)e−αλµ(s−1)e−βµ .

(38)

Note that we consider the hyperparameters (r,α, s ,β ) to be fixed. The candidate draws in our random-walk

Metropolis-Hastings sampler are generated using

λc = exp(logλ+ ελ), ελ ∼N (0,σ2
λ)

µc = exp(logµ+ εµ), εµ ∼N (0,σ2
µ).

In this way we ensure that the parameters always remain positive.

The parameters are now drawn sequentially using the following two-step Gibbs sampler:

1. Start sampling with initial values for λ and µ

2. Update λ

• Draw the candidate value: λc

• Compute α=min
�

1,π(λc ,µ|r,α, s ,β ,x , tx )/π(λ,µ|r,α, s ,β ,x , tx )
�

.

• With probability α, set λ=λc

3. Update µ:

• Draw the candidate value: µc

• Compute α=min
�

1,π(λ,µc |r,α, s ,β ,x , tx )/π(λ,µ|r,α, s ,β ,x , tx )
�

.

• With probability α, set µ=µc

4. Repeat steps 2 and 3.
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Appendix B.2 BG/NBD model

For the conditional posterior distribution of the transaction rate, we have π(λ|x , tx , p )∝π(λ, p )π(x , tx |λ, p ) such

that

π(λ|x , tx , p )∝λx+r−1×







p e−λ(tx+α)+(1−p )e−λ(T+α) if 0< tx ≤ T

e−λ(T+α) if x = 0= tx .

We, therefore, have

π(λ|x , tx , p ) =
p

(tx+α)x+r

p
(tx+α)x+r +

1−p
(T+α)x+r

ϕx+r,tx+α(λ)+
1−p

(T+α)x+r

p
(tx+α)x+r +

1−p
(T+α)x+r

ϕx+r,T+α(λ), (39)

where ϕx ,β is the density of a gamma distribution with shape parameter x and rate parameter β .

Likewise, for the conditional posterior distribution of the defection probability, we have

π(p |x , tx ,λ)∝π(λ, p )π(x , tx |λ, p )∝







p a (1−p )b+x−2e−λtx +p a−1(1−p )b+x−1e−λT if 0< tx ≤ T

p a−1(1−p )b−1 if x = 0= tx

and so

π(p |x , tx ,λ) =
a

a +(b +x −1)e−λ(T−tx )
βa+1,b+x−1(p )+

(b +x −1)e−λ(T−tx )

a +(b +x −1)e−λ(T−tx )
βa ,b+x (p ) (40)

where βa ,b is the density of a beta distribution with parameters a and b .

Appendix B.3 PDO model

For the conditional posterior distribution of the transaction rate in the PDO model, we get

π(λ|x , tx , p )∝π(λ, p )π(x , tx |λ, p )∝ p
N
∑

n=mx

(1−p )n−1

(α+(n −1)τ)x
ϕx+r,α+(n−1)τ(λ)+

(1−p )N

(α+T )x
ϕx+r,α+T (λ),

so that

π(λ|x , tx , p ) =
N
∑

n=mx

w (n )
x ,p

Wx ,tx ,p
ϕx+r,α+(n−1)τ(λ)+

w (N+1)
x ,p

Wx ,tx ,p
ϕx+r,α+T (λ), (41)

where

w (n )
x ,p =











p (1−p )n−1

(α+(n−1)τ)x+r if 1≤ n ≤N

(1−p )N

(α+T )x+r if n =N +1,

and Wx ,tx ,p =
∑N+1

n=mx
w (n )

x ,p
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For the conditional posterior distribution of the defection probability, it holds

π(p |x , tx ,λ)∝π(λ, p |x , tx )∝π(λ, p )π(x , tx |λ, p )∝ p a
N
∑

n=mx

(1−p )b+n−2e−λ(T−(n−1)τ)+p a−1(1−p )b+N−1 .

Therefore,

π(p |x , tx ,λ) =
N
∑

n=mx

v (n )λ
Vtx ,λ

βa+1,b+n−1(p )+
v (N+1)
λ

Vtx ,λ
βa ,b+N (p ), (42)

is a mixture of beta distributions where

v (n )λ =











B (a +1,b +n −1)e−λ(T−(n−1)τ) if mx ≤ n ≤N

B (a ,b +N ) if n =N +1 .

and Vtx ,λ =
∑N+1

n=mx
v (n )λ and B (·, ·) is the beta function. Note that the value Vtx ,λ depends on the data only through

mx .

Appendix C HB estimation with a very diffuse prior on CDNOW

dataset

Table 15 presents the mean of unconditional expectations for the CDNOW data under a very diffuse prior

distribution. Recall that the prior parameters are chosen as ν0 = J + 3 and Γ0 = ν0 I , where J represents the

number of parameters of a customer (see Rossi, Allenby, and McCulloch (2005, Page 30)).

Table 15: Average of unconditional expectations in calibration period - under a diffuse prior on CDNOW data

HB1 HB2 HB3 HB4
Avg. E[x ] 0.228 0.096 0.253 0.209
Avg. E[tx ] 2.852 1.110 3.151 2.654

Although a very diffuse prior leads to badly estimated individual-level parameters, this does not necessary

lead to bad predictions on the future transaction number and the timing predictions. The main reason for this

is that these metrics are bounded. Figure 5 and Tables 16 to 19 show the forecasting performance of the HB

models under this very diffuse prior. Hence, it is important to also look at the posterior distributions of the

individual-level parameters. As noted earlier, these are very extreme under a diffuse prior for this data set.
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Figure 5: Conditional expectation of future transaction frequency and future transaction timing on CDNOW -
under a diffuse prior

Table 16: In-sample predictive performance for unconditional predictions of the expected number of transac-
tions and expected timing of last transaction - under a diffuse prior on CDNOW data

E[x ] E[tx ] -weeks-
MSE MAE ME+ ME− MSE MAE ME+ ME−

HB1 5.454 1.087 0.228 2.369 130.586 7.537 2.747 16.236
CDNOW HB2 5.689 1.061 0.096 2.501 147.785 7.081 1.094 16.653

HB3 5.414 1.092 0.253 2.344 128.279 7.626 3.024 16.172
HB4 5.486 1.083 0.208 2.388 132.239 7.481 2.556 16.357

Table 17: Model’s prediction performance on the number of transactions - under a diffuse prior on CDNOW
data

Correlation MSE MAE ME+ ME−
HB1 0.6245 2.606 0.758 0.413 1.858

CDNOW HB2 0.6154 2.890 0.748 0.302 1.990
HB3 0.6185 2.997 0.795 0.523 1.962
HB4 0.6173 2.744 0.680 0.247 2.094

Table 18: Highest Posterior Density Region and mean of correlations between behavioral rates - under a diffuse
prior on CDNOW data

ρθλθµ ρθλθη ρθηθµ
HPDR mean HPDR mean HPDR mean

CDNOW -0.163 0.297 0.078 0.070 0.312 0.188* -0.868 -0.835 -0.853*

Table 19: Model’s prediction performance on the time of next transaction - under a diffuse prior on CDNOW
data

Correlation MSE MAE ME+ ME−
HB1 0.5770 126.257 7.502 17.232 -4.052
HB2 0.5538 291.028 16.054 9.423 -17.628
HB3 0.5491 142.779 6.494 5.329 -10.314
HB4 0.5665 271.112 15.367 9.053 -16.873
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