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Abstract

In this paper we report observations of low energy (0.2-8 MeV)

electron increases observed in interplanetary space on Pioneer 10 as

it approached within 1 AU of Jupiter. These discrete bursts or increases

were typically several hundred times the normal quiet-time electron flux,

and became much more frequent as one approached Jupiter resulting in the

quasi-continuous presence of large fluxes of these electrons in inter-

planetary space. In view of the likely origin of these electrons at

Jupiter, and the similarity of these increases to quiet-time electron

increases previously observed at earth we have re-examined the temporal

presence of the quiet-time increases. It is found that these increases

have a 13 month periodicity indicating a Jovian origin for the events near

the earth as well.

It is noted that the integrated flux from quiet-time increase

electrons at 1 AU is comparable to the integrated ambient electron flux

itself. In addition, the spectrum of electrons observed in Jupiter's

m4gnetosphere, on Pioneer 10 in interplanetary space near Jupiter, for

the quiet-time increases near the earth, and for the ambient electron

spectrum are all remarkably similar. These two lines of evidetce suggest

the possibility that Jupiter could be the source of most of the ambient

electrons at low energies. At the same time it is difficult to understand

how Jovian electrons could be distributed uniformly throughout the inner

solar system so as to produce the relatively constant quiet-time spectrum.

At this time it is not possible to decide between a galactic knock-on

origin coupled with a small residual solar modulation or a Jovian

origin for the ambient electron intensity in the 0.2-40 MeV range.

//
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I. INTRODUCTION

The behavior of low energy cosmic-ray electrons (-0.2-30 MeV) has

become an important and intriguing aspect of cosmic ray research. These

relativistic, low rigidity particles are unique probes for investigating

the acceleration, propagation and modulation of both solar and galactic

cosmic rays. The first measurements of these electrons (Cline et al.,

1964, Simnett et al.,1969) found a flux in the 3-20 MeV region of -1%

of the total cosmic ray flux with an energy spectrum of the form E1.
75

Further measurements (Webber et al., 1973, Herford et al., 1973) extended

the observations down to -0.2 MeV with essentially the same spectral

shape. On the high energy side this was extended to -40 MeV by L'Heurex

et al. (1972). The entire low energy spectrum from 0.2-40 MeV is

remarkably different from the relatively flat differential spectra

measured from -40 MeV to -1 GeV. Above 1 GeV the measurements approach

apower law of -E * Since the spectral shape of the low energy component

is consistent with that of knock-on electrons produced in interstellar

space by higher energy nucleons, it has been generally assumed they were

interstellar secondaries. However this model requires that the total

solar modulation at low energies be less than a factor of -5.

In some respects such as Forbush Decreases, the time variations

of this low energy component appeared to be qualitatively the same as

that of higher energy cosmic rays (McDonald at al., 1972). The 11 year

or long term modulation was, however, smaller (~2.5 from solar minimum

to solar maximum) than the variation in higher energy electrons

(McDonald at al. 1972). A more pussling feature was the frequent
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(a total of 18-19 over a four year period) positive increases of these

electrons that could not be associated with discrete solar events.

These "quiet-time" increases represented a factor of 3-5 increase in

intensity and lasted from 5-12 days. They displayed a remarkable anti-

correlation with low-energy proton events. Qualitatively their ampli-

tude was observed to diminish toward solar maximum. Webber et al., (1973)

have reported that the correlation in quiet time increases observed on

two spacecraft tends to disappear when the spacecraft are separated by

more than -200 in heliocentric longitude. Further 2 and 3 spacecraft

comparisons will be of great interest in mapping the spatial variations

of these electrons.

The Pioneer 10 spacecraft was launched toward Jupiter in early

1972. As the spacecraft came within 1 AU of the planet, a marked increase

in MeV electron activity was observed, and it became clear that Jupiter

was releasing large bursts of energetic electrons into interplanetary

space (Trainor et al., 1974; Simpson et al., 1974). Some of these

increases were at least two orders of magnitude larger than the quiet-

time increases observed at earth. The question then arose, could some

fraction of the low-energy electrons observed at earth be coming from

Jupiter? We believe that at least part of the puzzling features of the

low-energy electrons observed at earth can be explained if some of

these electrons are of Jovian origin. We will present evidence in this

paper that most of the electron quiet-time increases are of Jovian

origin. Furthermore, the source strength appears adequate to supply

all the low energy 0.2-40 MeV electrons observed at earth. However,

Jupiter is essentially a point source at 5 AU, and it is not clear

if the required flux can be distributed around the earth's orbit at 1 AU.
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II. PIONEER 10 AND 11 RESULTS

The Goddard-University of New Hampshire cosmic ray experiments on

Pioneers 10 and 11 consisted of a coordinated set of three solid state

charged-particle telescopes. This paper contains data from two of these,

the high energy telescope (HET) and the second of two low energy telescopes

(LET-II). The LET-II is sensitive to electrons from -0.12-2.1 MeV, and

the HET covers the range 2.1-8.0 MeV. Both telescopes efficiently reject

protons by multiparameter analysis. Schematic diagrams of the detector

system are included in a companion paper to this one (Trainor et al.,

1974).

Let us first examine the relative locations of Pioneers 10 and 11

and Jupiter during the period of the measurements. The Pioneer 10 and

11 trajectories are shown in Fig. 1. Superimposed on the trajectories

are nominal interplanetary magnetic field lines, assuming a constant

solar wind speed of 400 km/sec. The location of Jupiter six months

prior to encounter is also shown. This figure will be referred to in

the following disaussion of the data.

The Pioneer 10 and 11 daily average electron counting rates in the

energy range 6.2-8 MeV are shown in Fig, 2(a) and (b) for 1973. Due to

the presence of radioisotope power generators (RTG's) on the spacecraft,

the background in the electron counting rates on both Pioneer 10 and 11

is roughly a factor of 40 larger than that due to true cosmic ray electrons.

Increases over background on these plots therefore represent very large

increases in the electron intensity (i.e. at least 40 times the expected

intensity). This very preliminary analysis is based on the "Rates Data."
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Further analysis using the multiple parameter pulse height data will

eliminate most, if not all, of the RTG background. Inspection of the

pulse-height data show that the counting rate increases are produced

by electrons and do not represent some spurious background. It is

evident that there is a striking increase in the occurrence of electron

events as Pioneer 10 approaches Jupiter. The black boxes indicate times

when solar protons were present at Pioneers 10 and 11. The largest solar

proton event seen on Pioneer 10 in 1973 was that on 3 May, yet'we see

that the accompanying electron increase barely exceeded background. It

is unlikely then that the other electron increases on Pioneer 10 in 1973

are of solar origin. Furthermore, in marked contrast to Pioneer 10,

there is very little activity seen on Pioneer 11. The only two excep-

tions (28 April and 30 July) are clearly flare associated. The level of

activity steadily increases as Pioneer 10 approaches Jupiter. The small

size of the flare associated events on Pioneer 10 and 11 and the lack of

any significant Pioneer 11 electron increases show that these electrons

are not of solar origin. The steady increase as Pioneer 10 approaches

Jupiter as well as the thirteen month periodicity observed in quiet

time electron increases (as discussed in a later section) indicate these

electron bursts are of Jovian origin. Jovian electrons were seen

possibly as early as 8 March 1973 and were certainly present by the end

of May. During the March-May period Pioneer 10 was between 1.2 and 0.8

AU away from Jupiter. Electrons escaping from Jupiter are therefore seen

at quite large distances from the planet.

Let us now refer back to Fig. 1 and examine the relative locations
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of Pioneers 10 and 11 during the times that Jovian electrons are present.

Both Pioneers 10 and 11 are moving roughly perpendicular to the inter-

planetary magnetic field lines during this time. Pioneer 10 does not

cross the nominal field line connecting to Jupiter until the actual

time of encounter. In fact, during the March-June period Pioneer 10

and Jupiter nearly line up along the same radius to the Sun. Since

the electrons are expected to propagate mainly along field lines, some

distortion of the field relative to the nominal spiral is necessary for

Jovian electrons to be easily seen at Pioneer 10.

During the latter half of 1973 Pioneer 11 is, on the other hand,

much more distant from Jupiter's field line. To permit Jovian electrons

to propagate to Pioneer 11 would require a very large deformation of the

magnetic field line. It is therefore quite reasonable that no large

Jovian electron increases are seen on Pioneer 11 during this time.

To show in more detail the time structure and energy dependence of

these events we have plotted three electron counting rates at different

energies on an expanded scale (6 hr. avg.) in Fig. 3. Solar proton

events, which are principally low-energy co-rotating types, are again

indicated by black boxes. Details of the time structure of these electron

events are more evident in this figure. They appear to have roughly equal

rise and decay times - typically of the order 1-2 days. The duration of

an event is generally of the order of 2-4 days. The longer events, parti-

cularly in August and September 1973, appear to be superpositiqns of

shorter events. At this point it is not possible to determine whether

this time structure is a feature of the escape process or is a result of



-6-

varying connection conditions due to changes in the interplanetary

magnetic field. The general increase in electron activity in the

vicinity of Jupiter is even more strikingly apparent in this figure

than in Fig. 2. Keeping in mind that the counting rate background

level is -40 times the nominal electron intensity, it is evident that

Jovian electrons are strongly dominating a region around the planet at

least 0.5 AU in extent.

The electron spectrum during the increase of 5 November is shown

in Fig. 4. It was necessary to choose one of the largest events to

derive a spectrum in order to insure that the lowest energy points

significantly exceeded the radioisotope power supply background. We

therefore cannot be certain that this spectrum represents the behavior

of all events, particularly the smaller ones at large distances from

the planet. The data are consistent with an E-1.5 power law over the

.12-8.0 MeV range. This is a preliminary analysis and present uncertain-

ties in the calibration of the detector are responsible for an error of

- + 0.3 in the power law exponent. Also shown in Fig. 4 is a representa-

tive spectrum of electrons in the outer part of the Jovian magnetosphere

taken from the companion paper (Trainor et al., 1974). In that paper

it is shown that the index of the differential electron spectrum in the

outer part of the Jovian magnetosphere (> 30.R ) is always in the 1.5-

2.0 range in the energy interval 0.12-8.0 MeV. The relative similarity

of the two spectra in Fig. 4 further confirms the Jovian origip and shows

that the escape of these electrons from the Jovian magnetosphere is an

energy-independent process. As discussed in the accompanying paper the

electrons in the outer Jovian magnetosphere do not appear to be stably

trapped with most of them diffusing into interplanetary space.
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III. OBSERVATION OF JOVIAN ELECTRONS AT THE EARTH

We have seen in the preceding section that Jupiter is a copious

source of MeV electrons. Furthermore, we have established that these

electrons are present at least as far as 1 AU away from the planet.

The question logically arises, could Jovian electrons be reaching the

earth, and, in particular, could they be responsible for the quiet-

time increases at 1 AU? Let us first assume that electrons from

Jupiter are strongly tied to field lines intersecting the Jovian mag-

netoophere. Such electrons would be seen at earth mainly at times when

the earth crossed field lines connecting with Jupiter. If the field

were a perfect Archimedean spiral, this would occur every 13 months.

(since Jupiter's period is 11.86 yr. the earth's synodic period with

respect to Jupiter is 13 months). The question then arises, do 13

month periodicities exist in the quiet-time increases at the earth?

In Fig. 5 we have plotted the 3-12 MeV electron counting rate from the

earth orbiting satellites IMPs III, IV, (McDonald et al., 1972) and

IMP V (Van Hollebeke, private communication) on 13 month epochs over

the period 1965-1972. Using>20 MeV protons as an indicator, periods

when solar activity was present have been removed. However, there

appear to be significant solar MeV electrons present from large co-

rotating events in mid-1966. The large increase in Nov. 1967 may also

have some solar contribution. The 13 month periodicity in the electron

intensity is immediately obvious. The increases are most pronounced

during the first three years (1965*-1967) and are generally a factor
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of 2-5 over the normal background level. The maxima in the envelopes

of these increases is separated by roughly 13 months. The data in 1969

are incomplete due to a gap between IMP IV and IMP V coverage and the

presence of solar activity. The existing data are, however, consistent

with the picture developed for the first three years. During 1970 the

effect has almost disappeared. Nonetheless a significant enhancement

during the middle of the 13 month period still exists. In 1971 and 1972

the 13 month variation has increased in magnitude, but has not yet returned

to the level of the 1965-1967 period. As has been previously suggested

(McDonald, et al., 1972) it is apparent that the quiet time increases

are anti-correlated with the long-term level of solar activity. The

increases were largest near solar maximum, (1965-66), nearly vanished near

solar maximum (1969-70), and began to increase as the next solar minimum

was approached (1971-72).

In Fig. 6 the time of the year that the earth crosses Jupiter's field

line is plotted for each year from 1964-1974. The vertical bars in the

plot give the duration of the periods when quiet-time increases were

present. With the exception of the 1964 bar all of the periods fall close

to or contain the predicted time of crossing Jupiter's field line. There

does, however, appear to be a tendency for the field line crossing to

occur near the beginning of these periods. Field line distortion will occur

due to changes in solar wind speed. Speeds greater than 350 km/sec will

produce straighter field lines which in turn will mean that the earth-

crossing of Jupiter's field line will take place earlier in time. Such a

mechanism is therefore incapable of explaining the tendency of increases

to occur after the field line crossing. Field line co-rotation would

tend to sweep particles around azimuthally in the co-rotation direction

which in turn could permit electrons to be seen at the earth after the
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time that Jupiter's field line is crossed. This mechanism would, however,

require long electron containment times (-7 days). In view of the short

decay times of solar flare electrons (4 1 day) such a mechanism is

probably not possible.

The specific details of the quiet-time increases are also of

interest. For example, the average duration of the individual in-

creases at earth is generally on the order of 10 days, which is some-

what longer than the duration of the increases seen on Pioneer 10 near

Jupiter.

The magnitude of the increases differs greatly between Pioneer 10

and the earth. At earth the increases are typically a factor of 2-5

over the background whereas on Pioneer 10 they are as much as a factor

of 300 over background. Thus the increases near Jupiter are 50-150

times as large as the increases near earth. At this time we have not

examined possible models for the propagation of these pulses; however
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the anti-correlation between quiet-time electron increases and low

energy solar protons pointed out by McDonald et al. (1972), argues

that turbulence or scattering effects are most important in this process.

Preliminary analysis of the upstream electron anisotropy in the 2-8

MeV interval on a daily basis shows that anisotropies, if they exist,

are k10%. Further work can be expected to reduce this limit by at least

a factor of 5. The existing limit does, however, show that a signifi-

cant randomization of the particle motion has occurred over the <.5 AU

distance between Pioneer 10 and Jupiter at the time of the measurements.
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IV. INTERPRETATION OF RESULTS: CAN JUPITER BE THE SOURCE OF QUIET-
TIME LOW-ENERGY COSMIC RAY ELECTRONS AS WELL?

The data presented in the preceding sections strongly support the

conclusion that most, if not all, the quiet-time increases at 1 AU are

of Jovian origin. We now address the question of whether some or all of

the low-energy ambient electrons previously thought to be of galactic

origin could possibly be coming from Jupiter. It was pointed out in

the.introduction that there were several puzzling features in the

behavior of these particles, including their relatively small long-term

modulation relative to higher energy protons and electrons. The spectra

of only a few quiet-time increases during 1967 and 1969 have been

reported (McDonald et al., 1972). The spectral form of E-2 during these

events was consistent with the E-1.75 spectrum reported by Simnett

at al., (1969) for the ambient electrons over a broader energy range

(3-20 MeV). Webber at al., (1972) showed that many of the 1968-69

increases maintained the same spectral form down to -0.2 MeV. XcDonald

et al. used this as an agrument that the increases, as well as the

nominal electron flux, were most probably of.the same origin. The

spectral index of the Pioneer 10 increases near Jupiter was 1.5'

(Trainor at al., 1974) with a probable uncertainty of a few tenths of

a power. The Pioneer 10 spectrum is slightly flatter than the 1 AU

spectra. Propagation effects, however, could produce a slight

steepening of the electron spectrum as the particles travel inward from

5 to 1 AU.

Referring back to Fig. 5, it is.apparent that near solar minimum

(1965) the integrated flux during each 13-month interval of quiet-time

incresse electrona at 1 AU is of the same order as the integrated
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nominal flux of ambient electrons. During 1967 and 1968 the quiet-

time increases were on the order of 25% of the nominal flux. From

this point of view one can infer that Jupiter possesses the necessary

source strength to supply these electrons.

Alternatively, one can calculate the source strength necessary to

uniformly fill a sphere of radius 5 AU with .2-20 MeV electrons at an

intensity of 5x10-2 electron/cm 2-sec-ster with a minimum lifetime of

2 hours which is of the order of the transit time. This gives a source

strength of '1028 electrons/sec. If the source of these electrons was

originally in the solar wind, then an acceleration efficiency of 10-2

is required (assuming an effective radius of the Jovian magnetosphere

of 30 RJ). The ideal approach, of course, would be to calculate or

determine the rate at which electrons are ejected from the Jovian

magnetosphere. The energy input to the Jovian magnetosphere necessary

for such a source strength is, however, significantly larger than the

solar wind energy input and probably implies that some other energy

source is required, One obvious candidate is Jupiter's rotational.

energy.

Finally, we turn to the question of the propagation of these

electrons from Jupiter to the earth. If Jovian electrons are the

source of the low-energy ambient cosmic-ray flux then they must some-

how have been transported azimuthally over at least 180* in heliocentric

longitude. Diffusion across field lines alone is probably insufficient

to do this, Solar wind speed variations can probably only account for

spreading the electrons out over 90* (3 mo. duration). Another possible

mechanism is transport due to co-rotation of the interplanetary magnetic
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field lines that Jupiter encounters as it moves about the sun. For

this to work at all, containment lifetimes comparable to a solar rota-

tion (i.e., '15 days) are needed. The decay times of solar flare

electron events are, however, generally ~1 day. It is, therefore,

difficult to understand how such long containment times could exist

for electrons in the inner solar system.

The 1967-68 period is of particular interest, since the duration

of the period when increases were present was the longest (18 mo.)

and the azimuthal propagation apparently most effective. This period

corresponded to rather unusual interplanetary conditions where the

dominant sector structure consisted of only two sectors. If, in fact,

sector boundaries are obstacles to particle propagation, as is indicated

by the confinement of quiet-time increases within sectors (McDonald,

et al., 1972), then the presence of only two sectors in 1967-68 could

indicate that propagation conditions were particularly favorable.

So far, then, we have been unable to come up with a satisfactory

transport mechanism to fill the inner solar system with Jovian elec-

trons. On the other hand, there are also difficulties with the assump-

tion that this low-energy electron spectrum is due mainly to galactic

knock-on electrons. Thia'galactic knock-on contribution can be accurately

calculated (Abraham et al., 1966) and has essentially the same spectral

shape and is a factor ^5 larger than the ambient electron spectrum.

Generally it is expected that the modulation of the low-energy electrons

is larger than this, and the large gradients of Jovian electrons between

1 and 5 AU also support the idea of a small diffusion coefficient K and

consequently a large modulation in the equatorial plane. If this is



- 14 -

correct, then if interstellar knock-on electrons are the dominant

componentthey most probably will have had to enter over the solar poles

where K is presumably larger.

It is possible that there will be similar bursts of Jovian protons

and alpha particles. The pre-encounter period contains a great deal

of low-energy ('1 MeV) solar proton activity, and it is, therefore, difficult

to identify any Jovian proton events. Moreover, these nuclei are one

to two orders lower in intensity in the outer Jovian magnetosphere than

electrons of the same energy and have a much steeper energy spectrum (E 4).

They are, therefore, not expected to be an important contribution

in the inner solar system.
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V. SUMMARY AND CONCLUSIONS

The principal conclusions of this paper are summarized as follows:

1. Jupiter is a strong source of MeV electrons as evidenced

by the dramatic increase in electron activity as pioneer 10

approached the planet.

2. The escape of these electrons is an energy-independent process.

One possibility is convective transport out of the Jovian

magnetosphere.

3. The quiet-time increases at 1 AU have a distinct 13 month

periodicity implying that most of them are of Jovian origin.

There is a tendency for most increases to occur during a 1-3

month period after the earth crosses Jupiter's nominal field

line.

4. The source strength required to populate the inner solar system

with Jovian electrons is not unreasonable. However no satisfactory

mechanism capable of transporting Jovian electrons over 360* in

longitude is known to us at present.
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FIGURE CAPTIONS

1. Pioneer 10 and 11 trajectories are shown in a non-rotating helio-

centric coordinate system. Superimposed are idealized spiral

magnetic field lines assuming a constant solar wind speed of 400 km/

sec. The marks on the 1 AU circle indicate the position of the

earth once each quarter.

2. " The daily average counting rates for 6.2-8 MeV electrons on

Pioneers 10(a) and 11(b). The black rectangles indicate the

larger solar cosmic rayevents. Most of these are of the low-

energy co-rotating type.

3. Six hour counting rate averages are plotted for three electron

energy intervals (2.1-3.7 MeV, 3.7-6.2 MeV and 6.2-8 MeV. The

cross-hatched rectangles are the same solar proton events of Fig. 2.

Note that in the Nov. 5 event data points from the two highest

energy channels are intermixed with their nearest neighbors.

4. Electron energy spectra for a large interplanetary electron increase

and in the outer Jovian magnetosphere. The data between .1 and 2

MeV is from the LET-II telescope (Trainor at al., 1974). *This

has a geometric factor of .015 cm2-ster so meaningful measurements

are possible only during the largest electron increases.

5. 3-12 MeV data from IMP's III and IV (McDonald and Simnett, 1972)

and IMP V (Van Hollebeke, private communication) plotted in 13

month epochs. The dashed line is a convenience for identifying

the electron increases. There still may be major solar cqntributions

in some periods such as 28.July-10 August 1966 and 20 September-

10 October 1966. The 13 month periodicity is clearly defined and

the amplitude decreases over solar maximum (41969).
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A background subtraction has not been made for the data after

July 1969.

6. The vertical bare give the duration of the periods when quiet-

time increases were present during the various epochs shown in

Figure 5. Arrows indicate when the length of the bar is uncertain

due to a data gap. The diagonal line represents the time of the

year that an idealized spiral interplanetary magnetic field line

would connect the earth and Jupiter assuming a constant plasma

velocity of 350 km/sec,
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