201 research outputs found

    Transit observations at the observatory in Grossschwabhausen: XO-1b and TrES-1

    Get PDF
    We report on observations of transit events of the transiting planets XO-1b and TrES-1 with the AIU Jena telescope in Grossschwabhausen. Based on our IR photometry (in March 2007) and available transit timings (SuperWASP, XO and TLC-project-data) we improved the orbital period of XO-1b (P = 3.941497±\pm0.000006) and TrES-1 (P = 3.0300737±\pm0.000006), respectively. The new ephemeris for the both systems are presented.Comment: 4 pages, 2 figure

    Transit observation at the observatory in Großschwabhausen: XO-1b and TrES-1

    Get PDF
    We report on observations of transit events of the transiting planets XO-1b and TrES-1 with the AIU Jena telescope in Großschwabhausen. Based on our (IR) photometry (in March 2007) and available transit timings (SuperWASP, XO and TLC-project-data) we improved the orbital period of XO-1b (P = 3.941497 ± 0.000006) and TrES-1 (P = 3.0300737 ± 0.000006), respectively. The new ephemeris for the both systems are presente

    Observations of the transiting planet TrES-2 with the AIU Jena telescope in Großschwabhausen

    Get PDF
    We have started high precision photometric monitoring observations at the AIU Jena observatory in Großschwabhausen near Jena in fall 2006. We used a 25.4cm Cassegrain telescope equipped with a CCD-camera mounted piggyback on a 90cm telescope. To test the attainable photometric precision, we observed stars with known transiting planets. We could recover all planetary transits observed by us. We observed the parent star of the transiting planet TrES-2 over a longer period in Großschwabhausen. Between March and November 2007 seven different transits and almost a complete orbital period were analyzed. Overall, in 31 nights of observation 3423 exposures (in total 57.05h of observation) of the TrES-2 parent star were taken. Here, we present our methods and the resulting light curves. Using our observations we could improve the orbital parameters of the syste

    Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin

    Full text link
    The transiting planet WASP-12 b was identified as a potential target for transit timing studies because a departure from a linear ephemeris was reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the existence of claimed variations in transit timing and interpret its origin. We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre telescopes. We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model which better explains observations than single-planet scenarios. We hypothesize that WASP-12 b might be not the only planet in the system and there might be the additional 0.1 M_Jup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable over long timescales.Comment: Accepted for publication in A&

    A High-Quality Genome-Scale Model for Rhodococcus opacus Metabolism

    Get PDF
    Rhodococcus opacus is a bacterium that has a high tolerance to aromatic compounds and can produce significant amounts of triacylglycerol (TAG). Here, we present iGR1773, the first genome-scale model (GSM) of R. opacus PD630 metabolism based on its genomic sequence and associated data. The model includes 1773 genes, 3025 reactions, and 1956 metabolites, was developed in a reproducible manner using CarveMe, and was evaluated through Metabolic Model tests (MEMOTE). We combine the model with two Constraint-Based Reconstruction and Analysis (COBRA) methods that use transcriptomics data to predict growth rates and fluxes: E-Flux2 and SPOT (Simplified Pearson Correlation with Transcriptomic data). Growth rates are best predicted by E-Flux2. Flux profiles are more accurately predicted by E-Flux2 than flux balance analysis (FBA) and parsimonious FBA (pFBA), when compared to 44 central carbon fluxes measured by 13C-Metabolic Flux Analysis (13C-MFA). Under glucose-fed conditions, E-Flux2 presents an R2 value of 0.54, while predictions based on pFBA had an inferior R2 of 0.28. We attribute this improved performance to the extra activity information provided by the transcriptomics data. For phenol-fed metabolism, in which the substrate first enters the TCA cycle, E-Flux2’s flux predictions display a high R2 of 0.96 while pFBA showed an R2 of 0.93. We also show that glucose metabolism and phenol metabolism function with similar relative ATP maintenance costs. These findings demonstrate that iGR1773 can help the metabolic engineering community predict aromatic substrate utilization patterns and perform computational strain design

    Inhibition of sodium–glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization

    Get PDF
    The goal of the present study was to evaluate the effects of SGLT2i on cardiac contractile function, substrate utilization, and efficiency before and during regional myocardial ischemia/reperfusion injury in normal, metabolically healthy swine. Lean swine received placebo or canagliflozin (300 mg PO) 24 h prior to and the morning of an invasive physiologic study protocol. Hemodynamic and cardiac function measurements were obtained at baseline, during a 30-min complete occlusion of the circumflex coronary artery, and during a 2-h reperfusion period. Blood pressure, heart rate, coronary flow, and myocardial oxygen consumption were unaffected by canagliflozin treatment. Ventricular volumes remained unchanged in controls throughout the protocol. At the onset of ischemia, canagliflozin produced acute large increases in left ventricular end-diastolic and systolic volumes which returned to baseline with reperfusion. Canagliflozin-mediated increases in end-diastolic volume were directly associated with increases in stroke volume and stroke work relative to controls during ischemia. Canagliflozin also increased cardiac work efficiency during ischemia relative to control swine. No differences in myocardial uptake of glucose, lactate, free fatty acids or ketones, were noted between treatment groups at any time. In separate experiments using a longer 60 min coronary occlusion followed by 2 h of reperfusion, canagliflozin increased end-diastolic volume and stroke volume and significantly diminished myocardial infarct size relative to control swine. These data demonstrate that SGLT2i with canagliflozin preserves cardiac contractile function and efficiency during regional myocardial ischemia and provides ischemia protection independent of alterations in myocardial substrate utilization
    corecore