451 research outputs found

    The Structuring of Interfirm Exchanges in Business Know-How: Evidence from International Collaborative Ventures

    Get PDF
    This is the author's final draft. The publisher's official version is available from: http://dx.doi.org/10.1002/(SICI)1099-1468(199706)18:4<279This study investigates the effects of transaction cost considerations on the apportionment of residual bearing and the assignment of managerial control between two firms involved in the exchange of business know-how. Data were collected from contractual agreements between multinational enterprises and indigenous firms that formed collaborative ventures in developing countries. A simultaneous-equation model was employed to test hypotheses that were derived under a theoretical framework based on the new institutional economics. The empirical results are supportive of the hypotheses

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Derivation of tropospheric methane from TCCON CH₄ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH₄). Temporal variability in the total column of CH₄ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH₄ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH₄ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH₄ because it is strongly correlated to CH₄ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH₄ is calculated as a function of the zonal and annual trends in the relationship between CH₄ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH₄ column averaging kernel to estimate the contribution of stratospheric CH₄ to the total column. The resulting tropospheric CH₄ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Sediment history mirrors Pleistocene aridification in the Gobi Desert (Ejina Basin, NW China)

    Get PDF
    Central Asia is a large-scale source of dust transport, but it also held a prominent changing hydrological system during the Quaternary. A 223 m long sediment core (GN200) was recovered from the Ejina Basin (synonymously Gaxun Nur Basin) in NW China to reconstruct the main modes of water availability in the area during the Quaternary. The core was drilled from the Heihe alluvial fan, one of the world's largest alluvial fans, which covers a part of the Gobi Desert. Grain-size distributions supported by endmember modelling analyses, geochemical-mineralogical compositions (based on XRF and XRD measurements), and bioindicator data (ostracods, gastropods, pollen and non-pollen palynomorphs, and n-alkanes with leaf-wax delta D) are used to infer the main transport processes and related environmental changes during the Pleistocene. Magnetostratigraphy supported by radionuclide dating provides the age model. Grain- size endmembers indicate that lake, playa (sheetflood), fluvial, and aeolian dynamics are the major factors influencing sedimentation in the Ejina Basin. Core GN200 reached the pre-Quatemary quartz- and plagioclase-rich "Red Clay" formation and reworked material derived from it in the core bottom. This part is overlain by silt-dominated sediments between 217 and 110 m core depth, which represent a period of lacustrine and playa-lacustrine sedimentation that presumably formed within an endorheic basin. The upper core half between 110 and 0 m is composed of mainly silty to sandy sediments derived from the Heihe that have accumulated in a giant sediment fan until modem time. Apart from the transition from a siltier to a sandier environment with frequent switches between sediment types upcore, the clay mineral fraction is indicative of different environments. Mixed-layer clay minerals (chlorite/smectite) are increased in the basal Red Clay and reworked sediments, smectite is indicative of lacustrine-playa deposits, and increased chlorite content is characteristic of the Heihe river deposits. The sediment succession in core GN200 based on the detrital proxy interpretation demonstrates that lake-playa sedimentation in the Ejina Basin has been disrupted likely due to tectonic events in the southern part of the catchment around 1 Ma. At this time Heihe broke through from the Hexi Corridor through the Heli Shan ridge into the northern Ejina Basin. This initiated the alluvial fan progradation into the Ejina Basin. Presently the sediment bulge repels the diminishing lacustrine environment further north. In this sense, the uplift of the hinterland served as a tipping element that triggered landscape transformation in the northern Tibetan foreland (i.e. the Hexi Corridor) and further on in the adjacent northern intracontinental Ejina Basin. The onset of alluvial fan formation coincides with increased sedimentation rates on the Chinese Loess Plateau, suggesting that the Heihe alluvial fan may have served as a prominent upwind sediment source for it

    Recommending Learning Videos for MOOCs and Flipped Classrooms

    Full text link
    [EN] New teaching approaches are emerging in higher education, such as flipped classrooms. In addition, academic institutions are offering new types of training like Massive Online Open Courses. Both of these new ways of education require high-quality learning objects for their success, with learning videos being the most common to provide theoretical concepts. This paper describes a hybrid learning recommender system based on content-based techniques, which is able to recommend useful videos to learners and teachers from a learning video repository. This hybrid technique has been successfully applied to a real scenario such as the central video repository of the Universitat Politècnica de València.This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 and TIN2017-89156-R projects of the Spanish government, and PROMETEO/2018/002 project of Generalitat Valenciana. J. Jordán and V. Botti are funded by UPV PAID-06-18 project. J. Jordán is also funded by grant APOSTD/2018/010 of Generalitat Valenciana - Fondo Social Europeo.Jordán, J.; Valero Cubas, S.; Turró, C.; Botti Navarro, VJ. (2020). Recommending Learning Videos for MOOCs and Flipped Classrooms. Springer. 146-157. https://doi.org/10.1007/978-3-030-49778-1_12S146157Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl.-Based Syst. 22(4), 261–265 (2009)Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17(2), 271–284 (2012). https://doi.org/10.1007/s11280-012-0187-zvan Dijck, J., Poell, T.: Higher education in a networked world: European responses to U.S. MOOCs. Int. J. Commun.: IJoC 9, 2674–2692 (2015)Dwivedi, P., Bharadwaj, K.K.: e-learning recommender system for a group of learners based on the unified learner profile approach. Expert Syst. 32(2), 264–276 (2015)Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)Institute and Committee of Electrical and Electronics Engineers: Learning Technology Standards: IEEE Standard for Learning Object Metadata. IEEE Standard 1484.12.1 (2002)Klašnja-Milićević, A., Ivanović, M., Nanopoulos, A.: Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artif. Intell. Rev. 44(4), 571–604 (2015). https://doi.org/10.1007/s10462-015-9440-zMaassen, P., Nerland, M., Yates, L. (eds.): Reconfiguring Knowledge in Higher Education. Higher Education Dynamics, vol. 50. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-72832-2MLLP research group, Universitat Politècnica de València: Tlp: The translectures-upv platform. http://www.mllp.upv.es/tlpO’Flaherty, J., Phillips, C.: The use of flipped classrooms in higher education: a scoping review. Internet High. Educ. 25, 85–95 (2015)Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th international conference on World Wide Web, pp. 521–530 (2007)Rodríguez, P., Heras, S., Palanca, J., Duque, N., Julián, V.: Argumentation-based hybrid recommender system for recommending learning objects. In: Rovatsos, M., Vouros, G., Julian, V. (eds.) EUMAS/AT -2015. LNCS (LNAI), vol. 9571, pp. 234–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33509-4_19Roehl, A., Reddy, S.L., Shannon, G.J.: The flipped classroom: an opportunity to engage millennial students through active learning strategies. J. Fam. Consum. Sci. 105, 44–49 (2013)Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)Stoica, A.S., Heras, S., Palanca, J., Julian, V., Mihaescu, M.C.: A semi-supervised method to classify educational videos. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 218–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_19Tarus, J.K., Niu, Z., Yousif, A.: A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining. Future Gener. Comput. Syst. 72, 37–48 (2017)Tucker, B.: The flipped classroom. Online instruction at home frees class time for learning. Educ. Next Winter 2012, 82–83 (2012)Turcu, G., Heras, S., Palanca, J., Julian, V., Mihaescu, M.C.: Towards a custom designed mechanism for indexing and retrieving video transcripts. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 299–309. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_26Turró, C., Morales, J.C., Busquets-Mataix, J.: A study on assessment results in a large scale flipped teaching experience. In: 4th International Conference on Higher Education Advances (HEAD 2018), pp. 1039–1048 (2018)Turró, C., Despujol, I., Busquets, J.: Networked teaching, the story of a success on creating e-learning content at Universitat Politècnica de València. EUNIS J. High. Educ. (2014)Zajda, J., Rust, V. (eds.): Globalisation and Higher Education Reforms. GCEPR, vol. 15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28191-

    Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry

    Get PDF
    Multicapillary column (MCC) ion mobility spectrometers (IMS) are increasingly in demand for medical diagnosis, biological applications and process control. In a MCC-IMS, volatile compounds are differentiated by specific retention time and ion mobility when rapid preseparation techniques are applied, e.g. for the analysis of complex and humid samples. Therefore, high accuracy in the determination of both parameters is required for reliable identification of the signals. The retention time in the MCC is the subject of the present investigation because, for such columns, small deviations in temperature and flow velocity may cause significant changes in retention time. Therefore, a universal correction procedure would be a helpful tool to increase the accuracy of the data obtained from a gas-chromatographic preseparation. Although the effect of the carrier gas flow velocity and temperature on retention time is not linear, it could be demonstrated that a linear alignment can compensate for the changes in retention time due to common minor deviations of both the carrier gas flow velocity and the column temperature around the MCC-IMS standard operation conditions. Therefore, an effective linear alignment procedure for the correction of those deviations has been developed from the analyses of defined gas mixtures under various experimental conditions. This procedure was then applied to data sets generated from real breath analyses obtained in clinical studies using different instruments at different measuring sites for validation. The variation in the retention time of known signals, especially for compounds with higher retention times, was significantly improved. The alignment of the retention time—an indispensable procedure to achieve a more precise identification of analytes—using the proposed method reduces the random error caused by small accidental deviations in column temperature and flow velocity significantly

    Intercomparability of X_(CO_2) and X_(CH_4) from the United States TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) has become the standard for long-term column-averaged measurements of CO_2 and CH_4. Here, we use a pair of portable spectrometers to test for intra-network bias among the four currently operating TCCON sites in the United States (US). A previous analytical error analysis has suggested that the maximum 2σ site-to-site relative (absolute) bias of TCCON should be less than 0.2% (0.8ppm) in X_(CO_2) and 0.4% (7ppb) in X_(CH_4). We find here experimentally that the 95% confidence intervals for maximum pairwise site-to-site bias among the four US TCCON sites are 0.05–0.14% for X_(CO_2) and 0.08–0.24% for X_(CH_4). This is close to the limit of the bias we can detect using this methodology

    Emissions and topographic effects on column CO_2 (XCO_2) variations, with a focus on the Southern California Megacity

    Get PDF
    Within the California South Coast Air Basin (SoCAB), X_(CO)_2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. X_(CO)_2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin-background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory-2 (OCO-2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in X_(CO)_2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO_2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in X_(CO)_2 across the SoCAB as well

    Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity

    Full text link
    Within the California South Coast Air Basin (SoCAB), XCO2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. XCO2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin‐background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory‐2 (OCO‐2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in XCO2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in XCO2 across the SoCAB as well.Plain Language SummaryCities persistently have elevated carbon dioxide (CO2) levels as compared to surrounding regions. Within a city CO2 levels can also vary significantly at different locations for reasons such as more CO2 being emitted in some parts than others. Elevated column CO2 levels in the South Coast Air Basin (SoCAB) are in agreement for three observation systems (two satellite and one ground‐based) systems and vary with regional wind patterns throughout the year. In Pasadena, California, within the SoCAB, a significant fraction (about 25%) of variation in the column‐averaged CO2 can be explained by differences in surface altitude. This is important to understand so that all variations in column CO2 within an urban region are not mistakenly interpreted as being from CO2 surface fluxes.Key PointsIn the SoCAB, 20–36% of spatial variance in XCO2 is explained by topography on scales ≲10 kmIn Pasadena, XCO2 is enhanced by 2.3 ± 1.2 (1σ) ppm above background levels, at 1300 (UTC 8) with seasonal variationThe SoCAB XCO2 enhancement is in agreement for 3 different observation sets (TCCON, GOSAT, and OCO‐2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/1/jgrd53887.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/2/jgrd53887_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/3/jgrd53887-sup-0001-supinfo.pd
    corecore