231 research outputs found

    Alumni Profiles

    Get PDF
    Six former students with close remaining ties to UZH have provided short profiles of their experience at UZH and in their later careers. Since their time at UZH, they have become professors, founders of companies, heads of industrial research in leading chemical companies, patent attorneys, among other careers. They clearly illustrate how personally beneficial a UZH training can be

    Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)

    Get PDF
    Copyright @ 1989 American Institute of PhysicsBimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gases—Mu+X2→MuX+X—are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(−0.095±0.020) kcal mol−1], constant over the temperature range of ∼200–400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This result is consistent with the energy dependence in the reactive cross section found some years ago in the atomic beam data of Hepburn et al. [J. Chem. Phys. 69, 4311 (1978)]. In comparing the present Mu data with the corresponding H atom kinetic data, it is found that Mu invariably reacts considerably faster than H at all temperatures, but particularly so at low temperatures in the cases of F2 and Cl2. The current transition state calculations of Steckler, Garrett, and Truhlar [Hyperfine Interact. 32, 779 (986)] for Mu+X2 account reasonably well for the rate constants for F2 and Cl2 near room temperature, but their calculated value for Mu+Br2 is much too high. Moreover, these calculations seemingly fail to account for the trend in the Mu+F2 and Mu+Cl2 data toward pronounced quantum tunneling at low temperatures. It is noted that the Mu kinetics provide a crucial test of the accuracy of transition state treatments of tunneling on these early barrier HX2 potential energy surfaces.NSERC (Canada), Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their partial support of this research and the Canada Council

    Superparaelectric phase in the ensemble of non-interacting ferroelectric nanoparticles

    Full text link
    For the first time we predict the conditions of superparaelectric phase appearance in the ensemble of non-interacting spherical ferroelectric nanoparticles. The superparaelectricity in nanoparticle was defined by analogy with superparamagnetism, obtained earlier in small nanoparticles made of paramagnetic material. Calculations of correlation radius, energetic barriers of polarization reorientation and polarization response to external electric field, were performed within Landau-Ginzburg phenomenological approach for perovskites Pb(Zr,Ti)O3, BiFeO3 and uniaxial ferroelectrics rochelle salt and triglycine sulfate.Comment: 28 pages, 7 figures, 3 Appendices, to be submitted to Phys. Rev.

    Proton NMR for Measuring Quantum-Level Crossing in the Magnetic Molecular Ring Fe10

    Full text link
    The proton nuclear spin-lattice relaxation rate 1/T1 has been measured as a function of temperature and magnetic field (up to 15 T) in the molecular magnetic ring Fe10. Striking enhancement of 1/T1 is observed around magnetic field values corresponding to a crossing between the ground state and the excited states of the molecule. We propose that this is due to a cross-relaxation effect between the nuclear Zeeman reservoir and the reservoir of the Zeeman levels of the molecule. This effect provides a powerful tool to investigate quantum dynamical phenomena at level crossing.Comment: Four pages, to appear in Phys.Rev.Let

    Annealing of gold nanostructures sputtered on polytetrafluoroethylene

    Get PDF
    Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition by X-ray photoelectron spectroscopy (XPS) in dependence on the gold layer thickness. Transition from discontinuous to continuous gold coverage takes place at the layer thicknesses 10 to 15 nm and this threshold remains practically unchanged after the annealing at the temperatures below 200°C. The annealing at 300°C, however, leads to significant rearrangement of the gold layer and the transition threshold increases to 70 nm. Significant carbon contamination and the presence of oxidized structures on gold-coated samples are observed in XPS spectra. Gold coating leads to a decrease in the sample surface roughness. Annealing at 300°C of pristine PTFE and gold-coated PTFE results in significant increase of the sample surface roughness

    Muon spin relaxation study of spin dynamics in poly(triarylamine)

    Get PDF
    Organic semiconductors (OSCs) have been of great interest over the last couple of decades owing to their mechanic flexibility, ease of processing, high tuneability and availability. One area of OSCs that is of growing interest is polymers as they possess many of the desirable properties, in particular print processing and tunability of electronic properties, necessary for application in devices such as organic solar cells and the spin valves being engineered for hard disks and logic devices. Much focus has been given in recent years to the areas of research including the electron and hole dynamics, transport mechanisms and spin relaxation in OSCs in order to utilise them in novel organic devices. In this paper the µSR technique is applied to carry out an in depth study of the electron dynamics and spin relaxation in the commonly used Poly(triarylamine) polymer (PTAA). It is shown that the electron wavefunction can be considered localised to the aromatic rings providing a strong hyperfine coupling interaction with the muon. In addition the presence of an electron spin relaxation (eSR) is demonstratated that resembles that previously reported in the small organic molecule series

    Size-Dependent Materials Properties Toward a Universal Equation

    Get PDF
    Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done

    Temporal mapping of photochemical reactions and molecular excited states with carbon specificity

    Get PDF
    Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry
    corecore