711 research outputs found

    Fruit dry weight and quality of 'bing' sweet cherries grown without source limitations

    Get PDF
    Understanding the seasonal pattern of potential fruit growth is important for identification and timing of possible management operations, and quantification of this pattern is an important prerequisite to serve as input for crop growth models. `Bing¿ sweet cherry trees were heavily thinned at 63 degree-days (DD) (=8 days) after full bloom so weight and quality of the remaining fruit could be monitored under conditions of limiting and non-limiting carbohydrate supply. The effect of fruit thinning on mean shoot growth and trunk cross-sectional area also was analysed to detect possible translocation from reproductive to vegetative growth. Mean Fruit Dry Weight (MFDW) of tagged fruit was estimated weekly, based on fruit diameter, to identify the moment of the onset of competition between fruit within trees. At harvest, Fruit Number to Leaf Area Ratio (FNLAR, fruits m-2 LA) was 52% lower in heavily-thinned trees than in non-thinned trees. Yield per tree was higher (

    The Relationship Between Race and Suicide Ideation in Delinquent Females in the Texas Juvenile Justice System

    Get PDF
    Centers for Disease Control and Prevention (2002) reported that suicide is the second leading cause of death among people between the ages of 14 to 25 in the United States. This research examined the effect race has on suicidal ideation among a cohort of delinquent girls in Texas. This study examined 2004 data provided by the Texas Juvenile Probation Commission on referrals to the juvenile justice system in Texas (N = 6850). Other variables such as age, family structure, and sexual abuse were also examined to determine the strength and effect that sexual abuse has on a juvenile becoming suicidal. The results revealed that race has a minor effect on suicidal thoughts among females in the juvenile justice system when controlling for sexual abuse, age, and family structure. Implications for practice are further explained

    The EuroWordNet Base Concepts and Top Ontology

    Get PDF

    Genesis Concentrator Target Particle Contamination Mapping and Material Identification

    Get PDF
    The majority of surface particles were found to be < 5 microns in diameter with increasing numbers close to the optical resolution limit of 0.3 microns. Acceleration grid EDS results show that the majority of materials appear to be from the SRC shell and SLA materials which include carbon-carbon fibers and Si-rich microspheres in a possible silicone binder. Other major debris material from the SRC included white paint, kapton, collector array fragments, and Al. Image analysis also revealed that SRC materials were also found mixed with the Utah mud and salt deposits. The EDS analysis of the acceleration grid showed that particles < 1 m where generally carbon based particles. Chemical cleaning techniques with Xylene and HF in an ultrasonic bath are currently being investigated for removal of small particles by the Genesis science team as well as ultra-pure water megasonic cleaning by the JSC team [4]. Removal of organic contamination from target materials is also being investigated by the science team with the use of UV-ozone cleaning devices at JSC and Open University [5]. In preparation for solar wind oxygen analyses at UCLA and Open University [1, 2], surface particle contamination on three Genesis concentrator targets was closely examined to evaluate cleaning strategies. Two silicon carbide (Genesis sample # 60001 and 60003) and one chemical vapor deposited (CVD) 13C concentrator target (60002) were imaged and mosaic mapped with optical microscopes. The resulting full target mosaic images and particle feature maps were subsequently compared with non-flight, but flight-like, concentrator targets and sample return capsule (SRC) materials. Contamination found on the flown concentrator acceleration grid was further examined using a scanning electron microscope (SEM). Energy dispersive X-ray spectroscopy (EDS) for particle identification was subsequently compared with the optical images from the flown targets. Figure 1 show that all three targets imaged in this report are fully intact and do not show any signs of material fractures. However, previous ellipsometry results and overview imaging of both flown SiC targets show a solar wind irradiation gradient from the center focal point to the outer edge [3]. In addition, due to the hard landing, each target has experienced varying degrees of impacts, scratches, and particle debris from the spacecraft and Utah impact site

    Stereomicroscope Inspection of Polished Aluminum Collector 50684.0

    Get PDF
    The Genesis polished aluminum "kidney" collector was damaged during the hard landing of the capsule on September 8, 2004 in the Utah desert. The kidney was introduced into the Genesis (ISO class 4) cleanroom laboratory on November 4, 2004 and stored under nitrogen cover gas. The collector is currently fastened to a highly polished stainless steel plate for secure handling. Curatorial work at JSC has made successful subdivision and subsequent allocation of samples from the kidney

    Higher Magnification Imaging of the Polished Aluminum Collector Returned from the Genesis Mission

    Get PDF
    The polished aluminum collector (previously referred to as the polished aluminum kidney) was intended for noble gas analysis for the Gene-sis mission. The aluminum collector, fabricated from alloy 6061T, was polished for flight with alumina, then diamond paste. Final cleaning was performed by soak-ing and rinsing with hexane, then isopropanol, and last-ly megasonically energized ultrapure water prior to installation. It was mounted inside the collector canister on the thermal shield at JSC in 2000. The polished aluminum collector was not surveyed microscopically prior to flight

    Surface Acoustic Wave Single-Electron Interferometry

    Full text link
    We propose an experiment to observe interference of a single electron as it is transported along two parallel quasi-one-dimensional channels trapped in a single minimum of a travelling periodic electric field. The experimental device is a modification of the surface acoustic wave (SAW) based quantum processor. Interference is achieved by creating a superposition of spatial wavefunctions between the two channels and inducing a relative phase shift via either a transverse electric field or a magnetic field. The interference can be used to estimate the decoherence time of an electron in this type of solid-state device

    Preliminary Quantification of Image Color Gradient on Genesis Concentrator Silicon Carbine Target 60001

    Get PDF
    The Genesis spacecraft concentrator was a device to focus solar wind ions onto a 6-cm diameter target area, thus concentrating the solar wind by 20X [1]. The target area was comprised of 4 quadrants held in place by a gold-coated stainless steel "cross" (Fig. 1). To date, two SiC and one chemical vapor deposited (CVD) quadrants have been imaged at 5X using a Leica DM-6000M in autoscan mode. Complete imaging of SiC sample 60001 required 1036 images. The mosaic of images is shown in Fig. 2 and position of analyzed areas in Fig. 3. This mosaic imaging is part of the curatorial documentation of surface condition and mapping of contamination. Higher magnification (50X) images of selected areas of the target and individual contaminant particles are compiled into reports which may be requested from the Genesis Curator [2]

    Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces

    Get PDF
    The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF

    Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    Get PDF
    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis
    corecore