13 research outputs found

    Tumor necrosis factor-alpha inhibition reduces CXCL-8 levels but fails to prevent fibrin generation and does not improve outcome in a rabbit model of endotoxic shock

    Get PDF
    The effects of a monoclonal antibody (mAb) to tumor necrosis factor-alpha (TNF-alpha) were examined in a rabbit model of endotoxic shock. Intravenous administration of lipopolysaccharide (100 microg/kg/hr) for 6 hours (n = 11) increased TNF-alpha levels. Fibrinogen was partially consumed, and fibrin deposits were seen in kidney and lungs at 24 hours. Mortality at 24 hours was 64%. Levels of interleukin-8 (aka CXCL-8) were notably increased. Mean arterial pressure (MAP) and leukocyte counts decreased, whereas creatinine levels were enhanced. The anti-TNF-alpha mAb (20 mg/kg i.v. bolus + 5 mg/kg/h i.v. for the first 90 minutes) (n = 10) efficiently inhibited the TNF-activity. Rabbits exhibited lower CXCL-8 levels; MAP improved, the decrease in leukocyte counts was partially prevented and creatinine levels were lower, but fibrinogen, fibrin deposits in kidneys and lungs and mortality, 55%, were similar to the LPS group. Rabbits that did not survive exhibited lower fibrinogen levels, more fibrin in kidneys and lungs and higher CXCL-8 and creatinine levels than survivors, while there were no differences in TNF-alpha, MAP and leukocytes. Thus, the inhibition of TNF-alpha, although beneficial through lowering CXCL-8 levels, is not enough to improve the outcome, which could be partly due to the inability to prevent the fibrin deposits formation in kidneys and lungs

    Interleukin (IL)-8 and growth related oncogene-alpha in severe endotoxemia and the effects of a tumor necrosis factor-alpha/IL-1beta inhibitor on these chemokines

    No full text
    FR167653 inhibits the production of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, powerful inducers of CXC chemokines IL-8 and growth related oncogene (GRO)-alpha. The production of IL-8 and GRO-alpha was investigated and the effects of FR167653 were examined in a rabbit model of endotoxin shock. Male New Zealand rabbits were given endotoxin at a dose sufficient to induce DIC. Three groups of rabbits received FR167653 at different doses. TNF-alpha, IL-1beta, IL-8, and GRO-alpha levels were measured, several pathologic features were evaluated, and the results were compared with those obtained in control rabbits, which received only endotoxin. Endotoxin increased serum levels of IL-8 and GRO-alpha, which were associated with hypotension, renal dysfunction, and mortality, peaking at 4 h. FR167653 improved mortality, an event that was associated with decreased levels of not only TNF-alpha and IL-1beta but also IL-8 and GRO-alpha. TNF-alpha peaked at 2 h, at a time point before IL-8 and GRO-alpha reached their peak, and the TNF-alpha level was tightly correlated with that of IL-8 and GRO-alpha. Altogether, these data suggest the possible involvement of IL-8 and GRO-alpha in endotoxin shock, and FR167653 may foster a beneficial outcome in part by modulating the chemokines level by inhibiting TNF-alpha and IL-1beta

    Tumor necrosis factor-alpha inhibition reduces CXCL-8 levels but fails to prevent fibrin generation and does not improve outcome in a rabbit model of endotoxic shock

    No full text
    The effects of a monoclonal antibody (mAb) to tumor necrosis factor-alpha (TNF-alpha) were examined in a rabbit model of endotoxic shock. Intravenous administration of lipopolysaccharide (100 microg/kg/hr) for 6 hours (n = 11) increased TNF-alpha levels. Fibrinogen was partially consumed, and fibrin deposits were seen in kidney and lungs at 24 hours. Mortality at 24 hours was 64%. Levels of interleukin-8 (aka CXCL-8) were notably increased. Mean arterial pressure (MAP) and leukocyte counts decreased, whereas creatinine levels were enhanced. The anti-TNF-alpha mAb (20 mg/kg i.v. bolus + 5 mg/kg/h i.v. for the first 90 minutes) (n = 10) efficiently inhibited the TNF-activity. Rabbits exhibited lower CXCL-8 levels; MAP improved, the decrease in leukocyte counts was partially prevented and creatinine levels were lower, but fibrinogen, fibrin deposits in kidneys and lungs and mortality, 55%, were similar to the LPS group. Rabbits that did not survive exhibited lower fibrinogen levels, more fibrin in kidneys and lungs and higher CXCL-8 and creatinine levels than survivors, while there were no differences in TNF-alpha, MAP and leukocytes. Thus, the inhibition of TNF-alpha, although beneficial through lowering CXCL-8 levels, is not enough to improve the outcome, which could be partly due to the inability to prevent the fibrin deposits formation in kidneys and lungs

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Probing the chiral magnetic wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2_{2}) and triangular (v3_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Norm {r}_3^{\textrm{Norm}} is found to be larger than zero and to have a magnitude similar to r2Norm {r}_2^{\textrm{Norm}} , thus pointing to a large background contribution for these measurements. Furthermore, r2Norm {r}_2^{\textrm{Norm}} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMW_{CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMW_{CMW}, and in the 10–60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Multiplicity dependence of charged-particle intra-jet properties in pp collisions at √s = 13 TeV

    No full text
    The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton-proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at s√ = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region (|η|<0.9) using the sequential recombination anti-kT algorithm with jet resolution parameters R = 0.2, 0.3, and 0.4 for the transverse momentum (pT) interval 5−110 GeV/c. High-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet pT in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation functions zch and ξch are measured for different jet-pT intervals. Jet-pT independent fragmentation of leading jets is observed for wider jets except at high- and low-zch. The observed "hump-backed plateau" structure in the ξch distribution indicates suppression of low-pT particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-zch particles accompanied by a suppression of high-zch particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-pT jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet pT. These measurements provide important constraints to models of jet fragmentation

    Photoproduction of K+K− pairs in ultra-peripheral collisions

    No full text
    K+K− pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020) mesons, or directly as non-resonant K+K− pairs. Measurements of K+K− photoproduction probe the couplings between the ϕ(1020) and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K+K− pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K+K− production. There is significant K+K− production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<MKK<1.4 GeV/c2 above the ϕ(1020) resonance, for rapidity |yKK|<0.8 and pT,KK<0.1 GeV/c, the measured coherent photoproduction cross section is dσ/dy = 3.37 ± 0.61 (stat.) ± 0.15 (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,n ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ(1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ(1020) decays, direct K+K− photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+K− photoproduction are presented

    Common femtoscopic hadron-emission source in pp collisions at the LHC

    No full text
    The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at s√=13 TeV from charged π-π correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass (mT) of the pairs, leading to the observation of a common scaling for both π-π and K-p, suggesting a collective effect. Further, the present results are compatible with the mT scaling of the p-p and p−Λ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles

    Investigating the nature of the K∗0(700) state with π±K0S correlations at the LHC

    No full text
    The first measurements of femtoscopic correlations with the particle pair combinations π±K0S in pp collisions at s√=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K∗0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±K0S pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K∗0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K∗0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K∗0(700) resonance

    Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

    No full text
    This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at s√ = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of 1.4<|Δη|<1.8 and a transverse momentum of 1<pT<2 GeV/c, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new results allows for the first direct quantitative comparison with the results obtained in e+e− collisions at s√ = 91 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range where the e+e− results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in e+e− annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in e+e− annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions
    corecore