42 research outputs found

    End-of-Waste Criteria for Glass Cullet: Technical Proposals

    Get PDF
    This report is the JRC-IPTS contribution to the development of the end-of-waste criteria for glass cullet in accordance with Article 6 of Directive 2008/98/EC of the European Parliament and of the Council on waste (the Waste Framework Directive). This report includes a possible set of end-of-waste criteria and shows how the proposals were developed based on a comprehensive techno-economic analysis of glass recycling and an analysis of the economic, environmental and legal impacts when glass cullet ceases to be waste. The purpose of end-of-waste criteria is to avoid confusion about the waste definition and to clarify when certain waste that has undergone recovery ceases to be waste. Recycling should be supported by creating legal certainty and an equal level playing field and by removing unnecessary administrative burdens. The end-of-waste criteria should provide a high level of environmental protection and an environmental and economic benefit.JRC.J.5-Sustainable Production and Consumptio

    Longitudinal pathways of cerebrospinal fluid and positron emission tomography biomarkers of amyloid-β positivity.

    Full text link
    peer reviewedMismatch between CSF and PET amyloid-β biomarkers occurs in up to ≈20% of preclinical/prodromal Alzheimer's disease individuals. Factors underlying mismatching results remain unclear. In this study we hypothesized that CSF/PET discordance provides unique biological/clinical information. To test this hypothesis, we investigated non-demented and demented participants with CSF amyloid-β(42) and [18F]Florbetapir PET assessments at baseline (n = 867) and at 2-year follow-up (n = 289). Longitudinal trajectories of amyloid-β positivity were tracked simultaneously for CSF and PET biomarkers. In the longitudinal cohort (n = 289), we found that participants with normal CSF/PET amyloid-β biomarkers progressed more frequently toward CSF/PET discordance than to full CSF/PET positivity (χ(2)((1)) = 5.40; p < 0.05). Progression to CSF+/PET+ status was ten times more frequent in cases with discordant biomarkers, as compared to csf-/pet- cases (χ(2)((1)) = 18.86; p < 0.001). Compared to the CSF+/pet- group, the csf-/PET+ group had lower APOE-ε4ε4 prevalence (χ(2)((6)) = 197; p < 0.001; n = 867) and slower rate of brain amyloid-β accumulation (F((3,600)) = 12.76; p < 0.001; n = 608). These results demonstrate that biomarker discordance is a typical stage in the natural history of amyloid-β accumulation, with CSF or PET becoming abnormal first and not concurrently. Therefore, biomarker discordance allows for identification of individuals with elevated risk of progression toward fully abnormal amyloid-β biomarkers, with subsequent risk of neurodegeneration and cognitive decline. Our results also suggest that there are two alternative pathways ("CSF-first" vs. "PET-first") toward established amyloid-β pathology, characterized by different genetic profiles and rates of amyloid-β accumulation. In conclusion, CSF and PET amyloid-β biomarkers provide distinct information, with potential implications for their use as biomarkers in clinical trials

    Tau PET imaging: present and future directions.

    Get PDF
    Abnormal aggregation of tau in the brain is a major contributing factor in various neurodegenerative diseases. The role of tau phosphorylation in the pathophysiology of tauopathies remains unclear. Consequently, it is important to be able to accurately and specifically target tau deposits in vivo in the brains of patients. The advances of molecular imaging in the recent years have now led to the recent development of promising tau-specific tracers for positron emission tomography (PET), such as THK5317, THK5351, AV-1451, and PBB3. These tracers are now available for clinical assessment in patients with various tauopathies, including Alzheimer's disease, as well as in healthy subjects. Exploring the patterns of tau deposition in vivo for different pathologies will allow discrimination between neurodegenerative diseases, including different tauopathies, and monitoring of disease progression. The variety and complexity of the different types of tau deposits in the different diseases, however, has resulted in quite a challenge for the development of tau PET tracers. Extensive work remains in order to fully characterize the binding properties of the tau PET tracers, and to assess their usefulness as an early biomarker of the underlying pathology. In this review, we summarize recent findings on the most promising tau PET tracers to date, discuss what has been learnt from these findings, and offer some suggestions for the next steps that need to be achieved in a near future

    Plasma biomarker profiles in autosomal dominant Alzheimer's disease

    Get PDF
    © The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.Emerging plasma biomarkers of Alzheimer's disease might be non-invasive tools to trace early Alzheimer's disease-related abnormalities such as the accumulation of amyloid-beta peptides, neurofibrillary tau tangles, glial activation and neurodegeneration. It is, however, unclear which pathological processes in the CNS can be adequately detected by peripheral measurements and whether plasma biomarkers are equally applicable in both clinical and preclinical phases. Here we aimed to explore the timing and performance of plasma biomarkers in mutation carriers compared to non-carriers in autosomal dominant Alzheimer's disease. Samples (n = 164) from mutation carriers (n = 33) and non-carriers (n = 42) in a Swedish cohort of autosomal dominant Alzheimer's disease (APP p.KM670/671NL, APP p.E693G and PSEN1 p.H163Y) were included in explorative longitudinal analyses. Plasma phosphorylated tau (P-tau181), total tau (T-tau), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) concentrations were measured with a single-molecule array method as previously described. Plasma biomarkers were additionally correlated to Alzheimer's disease core biomarkers in the CSF. Results from the longitudinal analyses confirmed that plasma P-tau181, NfL and GFAP concentrations were higher in mutation carriers compared to non-carriers. This change was observed in the presymptomatic phase and detectable first as an increase in GFAP approximately 10 years before estimated symptom onset, followed by increased levels of P-tau181 and NfL closer to expected onset. Plasma P-tau181 levels were correlated to levels of P-tau181 and T-tau in the CSF. Altogether, plasma P-tau181, GFAP and NfL seem to be feasible biomarkers to detect different Alzheimer's disease-related pathologies already in presymptomatic individuals. Interestingly, changes in plasma GFAP concentrations were detected prior to P-tau181 and NfL. Our results suggest that plasma GFAP might reflect Alzheimer's disease pathology upstream to accumulation of tangles and neurodegeneration. The implications of these findings need additional validation, in particular because of the limited sample size.Peer reviewe

    Competing particle–hole excitations in ³⁰Na: Constraining state-of-the-art effective interactions

    Get PDF
    The odd–odd nucleus ³⁰Na is studied via a one-proton, one-proton–one-neutron and one-neutron removal reaction using an intermediate-energy ³¹Mg, ³²Mg and ³¹Na radioactive ion beam, respectively. Combining high-resolution γ-ray spectroscopy with the selectivity of the three reaction mechanisms, we are able to distinguish multiple particle–hole configurations. Negative-parity states in ³⁰Na are observed for the first time, providing an important measure of the excitation of the 1p1h/3p3h configuration and hence the sd–pf shell gap. The extracted band structures and level energies serve as invaluable input for the theoretical refinement of the effective interactions used in this region

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer’s disease

    No full text
    Neuroinflammation, as defined by the activation of microglia and astrocytes, has emerged in the last years as a key element of the pathogenesis of neurodegenerative diseases based on genetic findings and preclinical and human studies. This has raised the need for new methodologies to assess and follow glial activation in patients, prompting the development of PET ligands for molecular imaging of glial cells and novel structural MRI and DTI tools leading to a multimodal approach. The present review describes the recent advancements in microglia and astrocyte biology in the context of health, ageing and Alzheimer’s disease, the most common dementia worldwide. The review further delves in molecular imaging discussing the challenges associated with past and present targets, including conflicting findings, and finally presenting novel methodologies currently explored to improve our in vivo knowledge of the neuroinflammatory patterns in Alzheimer’s disease. With glial cell activation as a potential therapeutic target in neurodegenerative diseases, the translational research between cell biologists, chemists, physicists, radiologists and neurologists should be strengthened.<br/
    corecore