5,758 research outputs found

    Light capsules shaped by curvilinear meta-surfaces

    Get PDF
    We propose a simple yet efficient method for generating in-plane hollow beams with a nearly-full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centro-symmetric optical wavefront, such as that from a high-numericalaperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirrorsymmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle

    NR-SLAM: Non-Rigid Monocular SLAM

    Full text link
    In this paper we present NR-SLAM, a novel non-rigid monocular SLAM system founded on the combination of a Dynamic Deformation Graph with a Visco-Elastic deformation model. The former enables our system to represent the dynamics of the deforming environment as the camera explores, while the later allows us to model general deformations in a simple way. The presented system is able to automatically initialize and extend a map modeled by a sparse point cloud in deforming environments, that is refined with a sliding-window Deformable Bundle Adjustment. This map serves as base for the estimation of the camera motion and deformation and enables us to represent arbitrary surface topologies, overcoming the limitations of previous methods. To assess the performance of our system in challenging deforming scenarios, we evaluate it in several representative medical datasets. In our experiments, NR-SLAM outperforms previous deformable SLAM systems, achieving millimeter reconstruction accuracy and bringing automated medical intervention closer. For the benefit of the community, we make the source code public.Comment: 12 pages, 7 figures, submited to the IEEE Transactions on Robotics (T-RO

    Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric

    Full text link
    We investigate the existence and the dispersion characteristics of surface waves that propagate at an interface between metal-dielectric superlattice and isotropic dielectric. Within the long wavelength limit, when the effective-medium approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into the contact with semi-infinite dielectric, a new type of surface modes can appear. The propagation of such modes obliquely to the optical axes occurs under favorable conditions that regard thicknesses of the layers, as well as the proper choice of dielectric permittivity of the constituent materials. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to the field non-locality and consequently to the failure of the effective-medium approximation.Comment: 4 pages, 3 figure

    A Survey on Alliances and Related Parameters in Graphs

    Full text link
    In this paper, we show that several graph parameters are known in different areas under completely different names.More specifically, our observations connect signed domination, monopolies, α\alpha-domination, α\alpha-independence,positive influence domination,and a parameter associated to fast information propagationin networks to parameters related to various notions of global rr-alliances in graphs.We also propose a new framework, called (global) (D,O)(D,O)-alliances, not only in order to characterizevarious known variants of alliance and domination parameters, but also to suggest a unifying framework for the study of alliances and domination.Finally, we also give a survey on the mentioned graph parameters, indicating how results transfer due to our observations

    Activation of waste tire char upon cyclic oxygen chemisorption-desorption

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Industrial and Engineering Chemistry Research, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/ie801764xActivation of waste tire char upon cyclic oxygen chemisorption-desorption permits a controlled development of porosity versus burnoff using air as feed gas for the activation process. A slow but monotonical increase of BET surface area is obtained from cycle to cycle. Initially the process led to the development of mesoporosity without generating micropores and then the micropore volume is increased whereas a decrease of narrow mesopore (20-80 nm) volume is observed, probably as a consequence of mesopore widening. Although the S BET reaches relatively low values (below 250 m2/g) even after 15 cycles, this surface development is associated with low burnoff values (around 22% for indicated BET surface area) and corresponds in an important percentage (up to about 50%) to external (nonmicropore) area. Temperatures around 210 and 550 °C for chemisorption and desorption, respectively, have been found as optimum for the purpose of preparing granular mesoporous carbons which can be interesting candidates as catalytic supports for liquid phase applicationsThe authors greatly appreciate financial support from the Spanish Ministerio de Educación y Ciencia (CTQ2006-13512

    A Comprehensive Study on Pain Assessment from Multimodal Sensor Data

    Get PDF
    Pain assessment is a critical aspect of healthcare, influencing timely interventions and patient well-being. Traditional pain evaluation methods often rely on subjective patient reports, leading to inaccuracies and disparities in treatment, especially for patients who present difficulties to communicate due to cognitive impairments. Our contributions are three-fold. Firstly, we analyze the correlations of the data extracted from biomedical sensors. Then, we use state-of-the-art computer vision techniques to analyze videos focusing on the facial expressions of the patients, both per-frame and using the temporal context. We compare them and provide a baseline for pain assessment methods using two popular benchmarks: UNBC-McMaster Shoulder Pain Expression Archive Database and BioVid Heat Pain Database. We achieved an accuracy of over 96% and over 94% for the F1 Score, recall and precision metrics in pain estimation using single frames with the UNBC-McMaster dataset, employing state-of-the-art computer vision techniques such as Transformer-based architectures for vision tasks. In addition, from the conclusions drawn from the study, future lines of work in this area are discussed
    corecore