
Citation: Benavent-Lledo, M.;

Mulero-Pérez, D.; Ortiz-Perez, D.;

Rodriguez-Juan, J.; Berenguer-Agullo,

A.; Psarrou, A.; Garcia-Rodriguez, J.

A Comprehensive Study on Pain

Assessment from Multimodal Sensor

Data. Sensors 2023, 23, 9675. https://

doi.org/10.3390/s23249675

Academic Editors: Dhruv R.

Seshadri, Sheryl Berlin Brahnam and

Colin K. Drummond

Received: 26 October 2023

Revised: 30 November 2023

Accepted: 5 December 2023

Published: 7 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Comprehensive Study on Pain Assessment from Multimodal
Sensor Data
Manuel Benavent-Lledo 1 , David Mulero-Pérez 1, David Ortiz-Perez 1 , Javier Rodriguez-Juan 1 ,
Adrian Berenguer-Agullo 1, Alexandra Psarrou 2 and Jose Garcia-Rodriguez 1,*

1 Department of Computer Technology, University of Alicante, 03080 Alicante, Spain;
mbenavent@dtic.ua.es (M.B.-L.); dmulero@dtic.ua.es (D.M.-P.); dortiz@dtic.ua.es (D.O.-P.);
jrodriguez@dtic.ua.es (J.R.-J.); aberenguer@dtic.ua.es (A.B.-A.)

2 School of Computer Science and Engineering, University of Westminster, 115 New Cavendish Street,
London W1W 6UW, UK; psarroa@westminster.ac.uk

* Correspondenence: jgarcia@dtic.ua.es

Abstract: Pain assessment is a critical aspect of healthcare, influencing timely interventions and
patient well-being. Traditional pain evaluation methods often rely on subjective patient reports,
leading to inaccuracies and disparities in treatment, especially for patients who present difficulties to
communicate due to cognitive impairments. Our contributions are three-fold. Firstly, we analyze the
correlations of the data extracted from biomedical sensors. Then, we use state-of-the-art computer
vision techniques to analyze videos focusing on the facial expressions of the patients, both per-frame
and using the temporal context. We compare them and provide a baseline for pain assessment meth-
ods using two popular benchmarks: UNBC-McMaster Shoulder Pain Expression Archive Database
and BioVid Heat Pain Database. We achieved an accuracy of over 96% and over 94% for the F1 Score,
recall and precision metrics in pain estimation using single frames with the UNBC-McMaster dataset,
employing state-of-the-art computer vision techniques such as Transformer-based architectures for
vision tasks. In addition, from the conclusions drawn from the study, future lines of work in this area
are discussed.

Keywords: pain assessment; computer vision; deep learning; sensor data; signal processing;
pattern recognition

1. Introduction

Pain is an unpleasant sensation that individuals may encounter during their lifetime.
It is related to the nervous system and operates as an alert, signaling potential injury or
damage to the body. Consequently, seeking medical assistance is a common outcome
of pain. There are different types of pain based on its properties and duration (acute or
chronic, nociceptive or neurophatic, etc.), each producing different sensations [1,2].

Pain plays a pivotal role in human existence, serving as a crucial indicator of potential
health issues. In addition, if persistent, it may lead to disruptions in daily activities, causing
frustration, depression, or sleep disturbances as remarked in [3–6]. However, pain remains
a subjective experience, making unbiased evaluations difficult since it cannot be quantified
like temperature, volume, pressure, or other objective parameters. Nevertheless, efforts
have been made to create rating systems that enable healthcare providers to evaluate and
treat patients using quantitative measures. In recent years, various scales and surveys have
been put forth for this very purpose. These scales encompass the Official Belgian Disability
Scale, the AACS scale (Argentinean Association of Insurance Companies), the Numerical
Rating Scale (NRS), and the Verbal Rating Scale (VRS), among others. Within these widely
employed scales, several significant challenges emerge. Chief among them is the issue
of subjectivity, which stems from the inherent nature of pain as a subjective experience.
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In many instances, patients may convey information that is not entirely accurate. For in-
stance, in the NRS classification, a considerable degree of subjectivity persists, as it relies
on the patient’s self-assessment to assign a pain intensity rating within a range of 0 to 10
as depicted in Equation (1). This introduces a considerable degree of subjectivity. Moreover,
individuals belonging to specific groups, particularly those with cognitive impairments,
may encounter difficulties in effectively communicating their pain, even when simplified
scales are applied:

None = {0} Mild = {1, 2, 3} Moderate = {4, 5, 6} Severe = {7, 8, 9, 10} (1)

Given the inherent subjectivity of pain experiences, alternative methods have been
developed to leverage observable cues, such as facial expressions, body movements, or vo-
calizations exhibited by individuals. One such scale, created with this purpose in mind, is
the Pain Assessment in Impaired Cognition (PAIC) scale [7]. PAIC, centered on the observa-
tion of various pain indicators, is designed to offer an objective assessment of pain-related
signs that can be discerned in cases where patients are unable to verbally communicate
their discomfort. These indicators are evaluated from 0 (none) to 3 (high), depending on
the degree of pain expressed, and encompass the following:

• Facial expressions: People often convey their emotional state, as well as their emotional
well-being, through facial expressions. Analyzing these facial expressions is a method
for assessing whether the subject is experiencing any form of discomfort or distress.
Such expressions include actions such as frowning, raising the upper lip, or opening
the mouth.

• Body movements: People may move the body in different ways in reaction to pain. Some
common activities are rubbing, showing restlessness or protecting the affected area.

• Vocalization: Despite not seeking verbal communication, some vocal expressions like
“ouch” indicate pain or express discomfort.

Another noteworthy scale is the Prkachin and Solomon Pain Intensity Scale (PSPI) [8],
based on the FACS (Facial Action Coding System) [9]. PSPI endeavors to quantify an
individual’s pain levels by examining their facial expressions, specifically focusing on the
facial movements most pertinent to pain-related situations. A calculation is then derived
based on these observations [8,10]. Equation (2) depicts the formula used to derive the values
on the PSPI scale. Specifically, AU4 corresponds to frowning, AU6 and AU7 pertain to orbital
tension, AU9 and AU10 relate to lip elevation, and AU43 is associated with eye closure:

Pain = AU4 + (AU6||AU7) + (AU9||AU10) + AU43 (2)

Hence, it can be deduced that the PSPI scale holds notable significance in the context
of pain measurement via facial expressions. It boasts several favorable attributes, including
the capacity for objective pain assessment and a scoring range from 0 to 16, providing
enhanced precision in pain evaluation. As a result, it is chosen as the preferred method
within the methodologies developed and the datasets selected for this task’s advancement.

In this work, we present a comprehensive study over two popular datasets: UNBC-
McMaster [10] and BioVid [11]. These datasets have been widely recognized for their
significance in pain assessment research. By conducting our study on both of these datasets,
we aim to provide a robust and comparative analysis of different pain assessment method-
ologies. Furthermore, leveraging these two benchmark datasets enables us to establish a
baseline for pain assessment techniques, which can serve as a reference point for future
research endeavors in this field. This benchmarking process is vital in objectively evaluating
the performance of novel methodologies and understanding their relative strengths and
limitations. In the subsequent sections, we delve into the specifics of our methodology,
detailing the analysis of data extracted from biomedical sensors, as well as the applica-
tion of state-of-the-art computer vision techniques for facial expression analysis. We then
present the comparative results of these approaches, providing valuable insights into their
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respective contributions to pain assessment. The contributions of this work are summarized
as follows:

• Thorough examination of correlations extracted from diverse biomedical sensors
within the BioVid dataset to understand interdependencies.

• Precise pain level assessment, utilizing state-of-the-art computer vision algorithms on
static facial expressions of participants.

• Enhancement of analysis accuracy by integrating temporal context through video data,
transitioning from static to dynamic analysis.

• Establishment of a foundational baseline for future research in pain assessment while
advocating for the use of multimodal data.

The remaining of this paper is organized as follows. Section 2 provides an overview
of relevant literature on pain assessment. Section 3 provides an extensive analysis on the
BioVid dataset. In Sections 4 and 5, the UNBC-McMaster and BioVid datasets are used for
image and video classification of pain assessment, respectively. The limitations, strengths
and future directions for pain assessment are discussed in Section 6. Finally, conclusions
from this work are summarized in Section 7.

2. Related Works

Pain, due to its subjective nature, presents a considerable challenge when it comes to
evaluation. Existing methods for assessing pain predominantly hinge on an individual’s
ability to identify and communicate their experienced pain event. Yet, the perception and
articulation of pain are influenced by a multitude of factors encompassing personality at-
tributes, as well as physical and psychological well-being. Consequently, various strategies
have been suggested for the automated detection of pain intensity, leveraging quantifiable
physiological and audiovisual indicators. Building upon the aforementioned fact, the sub-
sequent sections present the most relevant databases in pain assessment, followed by an
exploration of the methodologies developed for automatic pain assessment.

2.1. Datasets

Among the initial and highly notable databases dedicated to pain made available
to the research community is the UNBC-McMaster Shoulder Pain Expression Archive
Database [10]. The database comprises 129 individuals experiencing shoulder pain, en-
gaging in prescribed motion exercises using both their affected and unaffected limbs.
Throughout these exercises, video footage was captured to document the participants’
natural facial expressions. The authors provided annotations for each video frame using
both the Facial Action Unit System (FACS) [9] and the Prkachin and Solomon Pain Intensity
(PSPI) [8] metrics. Besides frame annotations, sequence level annotations were created
based on each participant’s self-report and the observer’s measures. As a result, this dataset
is of remarkable interest for those approaches that do not involve any other modality.

A different approach was adopted by the authors of the BioVid Heat Pain Database [11],
comprising multi-modal data acquired from sensors (GSR, EMG, ECG, and EDA) and RGB
videos of the participant’s face. This database contains four progressively increasing levels
of artificially induced pain, along with baseline data, for each of the 87 participants. Al-
though the experiments involved healthy participants, the recorded pain-related expressions
were genuine. This database is particularly significant because of the combination of data
from at least two different modalities: camera recordings and physiological sensor signals.

More recently, the Multimodal EmoPain Dataset [12] was introduced. This dataset
focuses on chronic pain and includes data from 22 individuals with chronic lower back
pain and 28 healthy individuals for comparison. These participants engaged in various
physical exercises within a realistic rehabilitation environment. The dataset encompasses
high-resolution multi-view videos, multi-directional audio streams, three-dimensional
motion capture data, and EMG signals from back muscles. The recorded data underwent
dual annotation processes. The first set of labels represents continuous pain levels observed
by eight annotators, ranging from 0 (minimal pain) to 1 (maximal pain), based on facial
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expressions. The second set of labels identifies six pain-related body behaviors (guarding
or stiffness, hesitation, bracing or support, abrupt action, limping, rubbing or stimulating)
as defined by six rehabilitation experts.

Although the primary goal of utilizing deep learning in pain assessment is to deter-
mine the level of pain experienced by nonverbal patients, scholarly research also aims
to evaluate the patients’ oral expression to establish the pain severity they experience.
In [13], a new database was presented presented, consisting of 844 recordings obtained
from 80 subjects, referred to as the Dusseldorf Acute Pain Corpus. The objective of their
study was to conduct a three-level classification of pain severity (mild/moderate/severe)
utilizing support vector machines (SVMs) and long short-term memory recurrent neural
networks (LSTM-RNNs) as classifiers. Different features are extracted for audio signal
processing and speech recognition, including Mel-Frequency Cepstral Coefficients (MFCCs)
and deep spectrum representations obtained by processing the spectrogram of audios using
the Convolutional Neural Network VGG16 [14]. The results obtained in this study were
satisfactory, concluding that the classification of pain by signal analysis is very positive and
will give rise to different studies in the future.

2.2. Methods

Automatic pain recognition necessitates at least one sensory input channel to supply
the computer with information, often referred to as a modality. These modalities can
be broadly categorized into behavior and physiology. Behavioral modalities encompass
facial expressions, body movements (such as guarding, rubbing, restlessness, and head
movements), vocalizations (like crying or moaning), and spoken words (which can be
transcribed by speech recognition and may contain self-reported information). Within the
physiology domain, relevant modalities include brain activity, cardiovascular activity,
and electro-dermal activity. Additionally, conventional direct human–computer interfaces
like keyboards or touch displays can be employed to gather self- or observer-reported pain,
potentially along with related activities or contextual information, thus complementing the
information gathered from other modalities.

In addressing the aforementioned challenge, one of the prevailing methodologies
involves the application of Convolutional Neural Networks (CNNs). This widely adopted
approach is extensively discussed in [15], wherein networks like SANET [16] and SD-
NET [17] are employed. SANET excels at automatically discerning spatial attributes such
as color, while SDNET specializes in extracting shape-related features, like facial contours.
These networks play a pivotal role in both pre-processing the input images and extracting
crucial features. Subsequently, a learning phase is initiated to process these extracted
features and compute a pain score in accordance with the Prkachin and Solomon Pain
Intensity (PSPI) scale. This comprehensive process forms the backbone of our methodology
for addressing the identified issue.

In [18], the authors present a study with extensive data demonstrating that pain mea-
surement scales are generally helpful but their reliability is compromised when used for
individuals with cognitive disabilities. Avoiding subjective evaluations and utilizing clear,
value-neutral language, the authors provide a logically structured and concise explana-
tion of their findings. Furthermore, they adhere to conventional academic structure and
formatting while also employing precise subject-specific vocabulary. Overall, their study
serves as a valuable contribution to the field of pain measurement. It is recommended that
pain assessment be multi-modal, incorporating the examination of variables such as body
posture, facial expressions, and psychological parameters, as these factors can influence
the representation of pain. This project utilizes various techniques to extract characteristics
from the analyzed data, including audio, video, and trapezius Electrocardiograms, which
are subsequently fused in different phases for classification.

A system that processes information from a single modality is known as a unimodal
system; when it utilizes multiple modalities, it is referred to as a multimodal system.
A promising approach involves combining modalities within a multimodal system. Di-
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verse information sources can complement each other, potentially leading to enhanced
specificity and sensitivity. In general, if the individual modalities demonstrate sufficiently
strong predictive performance, their fusion tends to yield improved results. This has been
demonstrated in various studies, including the combination of facial expression and head
pose [19,20]; EDA, ECG, and sEMG [20,21]; video, EDA, ECG, and sEMG [20,22]; video,
RSP, ECG, and remote PPG [23]; video and audio [24]; and MoCap and sEMG [25].

3. Data Analysis from Acquisition Sensors

For the experiments in the subsequent sections, we selected the previously introduced
BioVid Heat Pain Database [11]. This section provides in-depth explanations and analyses
of the selected databases.

In the upcoming section, we delve into the examination of data obtained from sensors
from the BioVid Heat Pain Database [11]. The following subsections aim to offer comprehen-
sive insights and detailed analyses of the chosen database. Notably, the UNBC-McMaster
Shoulder Pain Expression Archive Database [10] was not employed in these analyses due
to its lack of sensor data.

3.1. Data Preparation

The BioVid dataset contains videos of 90 healthy adults between the ages of 20 and 65.
The dataset was created by the Neuroinformatics Technology Group at the University of
Magdeburg and the Medical Psychology Group at the University of Ulm [11,26]. Partici-
pants underwent controlled experiments in which thermal stimuli were applied to various
body regions, including the forearm and leg. The database is remarkably diverse and in-
cludes extensive participant information, including age, gender, medical history, and pain
sensitivity. In addition, subjective pain responses were documented, including ratings of
pain intensity and discomfort. Objective data including ECG, EMG, skin conductance and
heart rate were collected.

The database is organized into five subsets (A, B, C, D, and E), each containing some
different data. Some of them include facial EMG, differences in the muscles receiving the
thermal stimulus, or even the emotional reactions of the patients induced by watching
videos to analyze reactions to situations of sadness, anger, fear, happiness or a neutral
state. The BioVid database is considered one of the largest in the field of pain, making it a
viable option for experimentation. It offers a wealth of information on subjective pain from
patients and data from sensors and measurements from experts.

Subsets A and B of the BioVid dataset were analyzed to explore variables and look
for correlations. This provides a robust basis for examining responses to pain stimuli
and investigating the relationship between biomedical variables and facial expressions in
painful situations. The patient data are structured as follows:

• Part A: Pain Stimulation without Facial EMG (short time windows): It includes
frontal video and contains biomedical signals in the form of raw and pre-processed
data, such as GSR (Galvanic Skin Response), ECG (Electrocardiogram) and EMG
(Electromyography) in the trapezius muscle. It consists of a total of 8700 samples from
87 subjects. The data are divided into 5 classes with 20 samples per class and subject.
The time windows have a duration of 5.5 s.

• Part B: Facial EMG Pain Stimulation (partially masked face, short time windows):
This part comprises 8600 samples and includes frontal video alongside biomedical
signals in the form of both raw and pre-processed data, including GSR, ECG, and EMG.
Notably, these signals are collected from additional muscles, such as the corrugator
and zygomatic muscle. The dataset involves 86 subjects, with 84 of them also present
in Part A. Similar to Part A, it is segregated into 5 classes, each consisting of 20 samples
per class for every subject.

The merging of the two aforementioned subsets resulted in a larger database for
analysis. In this process, the time series of each of the samples was examined in detail,
and key statistics were calculated, including the mean, minimum, maximum and standard
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deviation of these time series. In total, 3480 samples were processed and combined,
allowing a more comprehensive assessment of subjects’ responses to pain stimulation and
the relationships between various biomedical variables and facial expressions in painful
situations. To better understand the significance of the biomedical variables used in this
study, we provide the following:

• GSR (Galvanic Skin Response) measures the electrical conductivity of the skin, which
can change in response to emotional or physiological stimuli. An increase in GSR may
suggest an increase in emotional or physiological activity.

• ECG (Electrocardiogram) records the electrical activity of the heart, providing infor-
mation about heart rate, heart rhythm and the electrical activity of the heart muscle.
The emotional state can also affect it.

• Trapezius EMG (Electromyography of the trapezius muscle) measures the electrical
activity in the trapezius muscle. The activity may escalate proportionately with muscle
tension or strain. It is utilized in this context to evaluate the muscle response of participants
to pain stimulation, which can imply the strength of the physical reaction to pain.

3.2. Variable Analysis

The time series of these three variables was thoroughly analyzed to identify patterns
using both additive and multiplicative seasonality analysis techniques for each variable.

A seasonality analysis was performed on the GSR variable, analyzing the observed
data, trend, and seasonality. The results indicate an absence of seasonality or a clear trend
as seen in Figure 1. Further investigation is needed to identify other potential patterns in
specific sections of the sequence. In contrast, the ECG variable exhibits greater variability
with a clear seasonality trend as shown in Figure 2. This enables analysis of the deviation
from anticipated data values and their subsequent use in evaluating user disruptions.
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Trend
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Multiplicative Decomposition
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G
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Figure 1. Seasonal trend of the GSR variable of a sample. The observed value remains stable.
The seasonality and residual values, in red and green successively, indicate that there is no pattern or
significant deviations in this variable.

As it can be seen in Figure 3, the EMG data do not show any seasonality, but there are
large changes in the values at certain times, which can be used to detect changes in muscle
tension and may be related to the feelings the person is experiencing.

The distributions of the mean, maximum, minimum and standard deviation values
for all samples were then analyzed on a variable-by-variable basis. The violin plot is
another way of displaying the same distribution, which allows us to visually evaluate the
two distributions.
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Figure 2. Seasonal trend of the ECG variable of a sample. This variable shows a clear trend sustained
over time, in purple color. In addition, high residual values appear in some regions of the series.
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Figure 3. Seasonal trend of the EMG variable of a sample. No pattern is identified in this variable,
but some abrupt changes stand out at some points in time that may be significant.

The distribution of the mean values of the GSR time series appears to be the same
for the samples of class 0 (no pain) and class 4 (maximum pain). As can be seen in
Figure 4, although the tail of the class 4 distribution is longer, they have a similar shape.
The distribution of the maximum and minimum values of the GSR variable also does not
differ between the different classes. On the other hand, the distribution of the standard
deviations of the GSR differs between the classes. We can see that high std values for this
variable correspond exclusively to samples in class 4 (maximum measured pain).

We then analyze the distribution of the Electrocardiogram (ECG) time series metrics.
The distribution of the mean values follows a broader bell curve for class 4 samples. In some
cases, the maximum and minimum values of the class 4 samples are higher and lower,
respectively. This difference in values from the mean may help to distinguish cases of users
with high pain. As expected, the highest deviation values are almost all for class 4 samples
(Figure 5).

The distribution of the trapezius EMG variable is similar in both classes as shown in
Figure 6. The three variables have comparable distributions when comparing data from
classes 0 and 4. The data shows that values deviating the most from the mean are mostly
from class 4. This suggests that these variables can potentially differentiate between pain
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presence or absence. The challenge arises from the large cluster of data around similar
values, which results in significant overlap in distribution curves across various classes.
As a result, accurately classifying most of the samples becomes challenging.
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Figure 4. Violin plot with the distribution of GSR variable.
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Figure 5. Violin plot with the distribution of ECG variable.
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Figure 6. Violin plot with the distribution of EMG variable.
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To tackle this, a pairwise correlation analysis was conducted to identify the variables
that display the highest correlation with the classification and to check whether certain
variables provide redundant information. Figure 7 illustrates the outcome of this analysis.
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Figure 7. Pairwise variable heatmap.

As observed, there is a minimal correlation between individual variables and the sam-
ple class. Furthermore, it is evident that various metrics (mean, maximum, and minimum)
derived from the time series of the GSR variable exhibit direct correlations, with the distri-
bution of each being a linear combination of the others. In contrast, the metrics derived
from the ECG variable display greater variability and may hold more relevance in the
detection of anomalies and fluctuations within the time series.

3.3. Machine Learning Methods

An analysis was performed using the T-SNE algorithm to reduce the data’s dimen-
sionality and enable visual representation. This method allows for the representation of
samples in both two and three dimensions. The accompanying figure demonstrates sample
representation using two T-SNE components. It becomes evident that the samples are
consistently distributed in the two-dimensional space, a feature that can also be observed
in the three-dimensional representation. However, it should be noted that this technique
does not aid in the classification of samples based on their respective classes. Consequently,
this analysis concludes that dimensionality reduction algorithms, specifically T-SNE, fail to
sufficiently distinguish variations in sample values among each class (Figure 8).

In conclusion, conventional machine learning models were implemented for the
purpose of data classification. Initially, we utilized logistic regression, and then examined a
variety of algorithms, including newton-cg, lbfgs, liblinear, sag, and saga. Our experiments
continued with support vector machines (SVMs), utilizing four distinct kernels: linear,
polynomial, rbf, and sigmoid. As our final approach, we explored decision trees by varying
the maximum branching depth ranging from 3 to 12.
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Figure 8. TSN-E representation of features in each class.

The summarized results can be found in the appended Table 1, which presents the
accuracy of each model during the testing phase. Notably, decision trees exhibited the
highest performance, achieving an accuracy of up to 79.45% with a maximum depth of
12 branches. These findings underscore the relevance of the dataset’s provided information
for pain detection in individuals. Nevertheless, they also imply that to further enhance
accuracy, it may be imperative to incorporate supplementary data and explore more
intricate models in future research endeavors. Video data could be used with deep learning
methods to improve these results.

Table 1. Results of the tested machine learning methods using the BioVid dataset.

Model Params Classes Precision (Test)

Logistic Regression newton-cg function 0, 4 72.91%
Logistic Regression liblinear function 0, 4 76.06%

SVM kernel linear 0, 4 71.34%
Decision tree max_depth = 9 0, 4 76.65%
Decision tree max_depth = 12 0, 4 79.45%

4. Per-Frame Analysis

As the initial task in the experimentation within this study, we tackled the challenge
of pain estimation from static images or frames, involving the assessment of pain levels
based on subjects’ facial expressions using state-of-the-art computer vision techniques. This
section is structured as follows: Section 4.1 describes the data preparation followed for the
experiments. Section 4.2 describes the proposed models for experimentation. And finally,
Section 4.3 presents and discusses the results.

4.1. Data Preparation

The first step in the process entails analyzing the two aforementioned datasets and
preparing the data for per-frame analysis. In the case of the BioVid dataset, which solely
contains videos with video-level annotations, a subset was selected considering different
classes, genres and ages as represented in Figure 9. From this subset, frames were ex-
tracted and uniformly classified into the same category for analysis, corresponding to the
video class.
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Figure 9. Distribution of frames per class on Biovid dataset.

In contrast to the previous dataset, the UNBC-McMaster dataset provides annota-
tions per frame, which is expected to result in improved image classification. However,
the primary drawback lies in the large number of classes that need to be classified and
the imbalanced distribution among these classes as illustrated in Figure 10a. To mitigate
issues related to overfitting or class bias, the PSPI values were organized as depicted in
Figure 10b, clustering the different labels into four main groups. Additionally, the number
of samples in class 0 (baseline) was capped at 8000 to achieve a balanced dataset.
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Figure 10. Comparison of UNBC-McMaster dataset class distributions. (a) Initial distribution (class 0
limited to 8000 samples for visualization). (b) Balanced distribution.

4.2. Proposed Models

After the selection of datasets for experimentation, a fine-tuning process was initiated.
This involved testing various architectures, as elaborated upon below, categorized into
two primary groups: Convolutional Neural Networks (CNNs) and Transformer-type
architectures. The proposed CNN models are presented in Section 4.2.1 and Transformer-
based models are presented in Section 4.2.2.

4.2.1. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks are widely utilized architectures in the computer
vision field for extracting information and features from images and learning patterns
within them.

We selected models that vary significantly in both the number of parameters and
depth. This approach will allow us to examine how these variations between the models
impact the classification.
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• VGG16 [14]. This neural network comprises 16 layers, including 13 convolutional
layers for feature extraction and 3 fully connected layers for classification. It utilizes
3 × 3 filters and is composed of a total of 138 million parameters.

• MobileNetv2 [27]. The architecture of this network is based on residual blocks, where
the input of a layer is integrated into the output, enabling it to learn the disparities.
This block type facilitates the reduction of computational complexity and the number
of parameters, rendering this architecture a highly viable choice for pain estimation,
given its suitability for deployment on various mobile devices. However, this decrease
in computational load may impact the results, resulting in lower accuracy compared
to other approaches.

• ResNet50V2 [28]. The primary feature is its capability to train extremely deep net-
works without compromising performance. It is extensively employed in feature
extraction and image classification. Due to its depth, it demands a substantial amount
of computational power.

• InceptionV3 [29]. This network is distinguished by its use of Inception modules. These
modules operate as multiple filters simultaneously applied to the input. The outcomes
of these filters are concatenated, forming the module’s output. While this enhances
accuracy, it also escalates the parameter count and computational demands. The charac-
teristics of this model, particularly its proficiency in extracting both global and local fea-
tures, make it a powerful model, heavier than others such as MobileNetV2 (InceptionV3
has 23.9 million parameters) but balanced and widely used in image classification.

• Xception [30]. The name of this model derives from the concept of ‘separable convolu-
tions’. It is a variation of the InceptionV3 model (with 22.9 million parameters, very
close to the 23.9 million of InceptionV3) that substitutes the Inception modules with
separable convolutions. This approach involves conducting convolutions in two steps:
depth convolution and point convolution. This technique is employed to alleviate the
computational load without significantly compromising performance.

4.2.2. Transformers-Based Architectures

Unlike the traditional convolutional architectures described above, these models are
based on Transformers [31], originally designed for Natural Language Processing (NLP).
Transformer-based models currently represent the state of the art in NLP tasks, replacing
the previous models, which is why they have started to be used for other modalities such
as vision.

• Vision Transformer (ViT) [32]: This model divides the image into small patches that
are treated as sequences of tokens, the type of input used by the Transformer layers.
In this way, the model can learn complex relationships between the different patches
and understand the structure of the image as a whole. This ability also allows it to
learn abstract and contextual patterns on unlabeled data (self-supervised learning),
so we can pre-train on large datasets and then perform fine-tuning on a specific task,
such as pain estimation in this case.

• Bidirectional Encoder representation from Image Transformers (BEiT) [33]: The au-
thors introduce a masked image modeling task for the pretraining of vision Trans-
formers. This model partitions the image into smaller patches, with some of these
patches deliberately masked. This deliberate masking introduces corruption into the
image, requiring the model to subsequently reconstruct the original image from the
corrupted version. Following this pretraining phase, the model becomes suitable for
deployment in downstream tasks, which can be pain estimation in this case.

• Swin V2 [34]: This is the largest dense vision model, boasting 3 billion parameters.
The authors present three primary techniques aimed at enhancing the results: a
residual-post-norm approach combined with cosine attention to enhance training
stability, a log-spaced continuous position bias method designed to effectively facilitate
the transfer of pre-trained models from low-resolution images to downstream tasks
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with high-resolution inputs, and a self-supervised pretraining method, known as
SimMIM, to reduce the requirement for extensive labeled images.

4.3. Results

After completing the work on the datasets and selecting the models to be tested,
the final step involves training the models, obtaining the metric results, and analyzing
them to draw conclusions.

The first experimentation was performed using the Biovid dataset; this attempt did
not yield the expected results. The accuracy of CNN-based models did not surpass 20%
when distinguishing between the detection of specific classes (PA1, PA2, PA3, or PA4) and
non-detection (class BL1). In fact, even in this binary classification scenario, the accuracy
did not exceed 50%. In essence, these outcomes are no better than random chance, leading
us to the conclusion that the model did not learn anything meaningful.

In contrast, experiments with Transformer-based architecture produced promising
results. When we mixed participants in the dataset, we achieved 97.04% accuracy on the test
set and 98.36% accuracy on the validation set. However, when training on one participant
and evaluating on another, we reached 100% accuracy on the validation set but only 20%
on the test set. This discrepancy suggests overfitting to the training data and implies that
this dataset may not be suitable for frame-based classification.

On the other hand, in the case of the UNBC-McMaster dataset, the results were
favorable. This outcome was expected, as this dataset was particularly well suited for the
task from the outset, given that the data are in image form rather than video. As mentioned
previously, this dataset will be tested using two subsets: one with full labeling and another
that clusters different labels while reducing the samples of the most common ones. This
approach results in a more balanced dataset with fewer labels, making it easier for the
models to learn how to estimate pain.

Regarding the results over the UNBC-McMaster dataset test set presented in Table 2,
as evident from the table and as anticipated in the experimental design, the best results were
achieved using the clustered version of the dataset. It is worth noting that Transformer-
based architectures outperformed classical Convolutional Neural Networks in this task,
even in cases involving the full dataset with 16 labels. The BEiT model delivered the
best performance, achieving over 96% accuracy on the test set, slightly outperforming the
ViT model.

Taking these results into consideration, we gathered more detailed information re-
garding the metrics corresponding to the optimal model, specifically the BEiT model. It
demonstrated a notable 96.37% accuracy on the test set. The additional significant metrics
encompass a 94.61% F1 Score, 94.67% precision, and 94.55% recall. These metrics exhibit
slightly inferior performance compared to the accuracy metric.

Table 2. Results for the various models on the UNBC-McMaster test set.

Model Classes Accuracy Loss

VGG16 Clustered, 4 94.75% 0.131
MobileNetV2 Clustered, 4 87.61% 0.522
ResNet50V2 Clustered, 4 93.88% 0.197
InceptionV3 Clustered, 4 92.87% 0.206

Xception Clustered, 4 80.75% 0.757

ViT Clustered, 4 96.37% 0.110
Full, 16 91.72% 0.260

BEiT Clustered, 4 96.82% 0.084
Full, 16 93.86% 0.166

Swin V2 Clustered, 4 93.77% 0.157
Full, 16 91.39% 0.255
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5. Video Analysis

After analyzing individual frames, we proceeded to analyze the complete video
sequences from part A of the BioVid database. The aim was to assess whether analyzing
temporal sequences that provide a broader context of the events can enhance the previous
results. To achieve this, we conducted experiments using three video Transformer models,
as they currently outperform other models for video classification, such as convolutional
networks (CNNs) or recurrent networks (RNNs), in terms of accuracy. This section is
structured as follows: Section 5.1 describes the data used for the experiments. Section 5.2
describes the proposed models for experimentation. And finally, Section 5.3 presents and
discusses the results.

5.1. Data Analysis

For this task, we exclusively utilized the Biovid dataset, as it is the sole source of
video information. In this case, we specifically used part A of this dataset. Given the
balanced distribution of data across labels within this part, no additional data preparation
was required. The distribution of the three subsets used is illustrated in Figure 11.

0 1 2 3 4
Classes

0

200

400

600

800

1000

1200

Nu
m

be
r o

f s
am

pl
es

Train
Validation
Test

Figure 11. Class distribution of Biovid train, validation and test subsets.

5.2. Proposed Models

In this context, we required models with the capacity to process visual temporal infor-
mation, specifically sequences of frames or images. The models previously mentioned are
unsuitable for this task, as they are designed exclusively for single-frame processing. There-
fore, we chose to work with Transformer-based architectures, which have demonstrated
exceptional performance in other applications. In this case, we applied them to video pro-
cessing, referred to as Video Transformers. Video Transformers distinguish themselves from
other architectures due to their unique ability to capture long-term temporal relationships
within sequences. This subsection provides a concise overview of three state-of-the-art
models that will be employed in our experimental work.

5.2.1. Video Masked AutoEncoder (VideoMAE)

Video Masked AutoEncoder (VideoMAE) [35] architecture, although not a Transformer
itself, collaborates with them to deliver state-of-the-art results. The authors investigated
the utilization of autoencoders for the self-supervised pre-training task necessary for
Transformers. To extract features, this model employs the vision Transformer introduced in
the previous section, namely ViT.
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5.2.2. TimeSformer

The TimeSformer [36] is another architecture based in the Transformer architecture,
purposefully designed to handle temporal sequences. This model extends the principles of
the ViT (Vision Transformer) into the temporal domain for application in video processing.
Because it is exclusively built on self-attention layers, there is no need for convolutional
layers. Notably, the authors conducted a comparative analysis of various attention mecha-
nisms within this model. Among these, the ‘divided attention’ approach stands out, where
network blocks employ separate temporal and spatial attention, resulting in the most
favorable outcomes.

5.2.3. ViViT

The ViViT model [37] was introduced in response to the success of image Transformers.
The authors proposed a range of Transformer-based models for video classification:

• Transformer Encoder. This is an extension of ViT into the temporal dimension.
• Factorized Encoder. In contrast to the previous model, this approach does not use

the same encoder for all videos. Instead, each video is divided into several chunks.
Spatial attention is initially applied to each clip, and the resulting vectors serve as
input to a second encoder, this time with a temporal focus. Each clip is assigned an
index for proper identification.

• Factorized Self-Attention. This is similar to the first model but with a distinction in
the attention computation, which occurs in two phases: spatial attention followed by
temporal attention.

• Factorized Dot Product. This is another variation of the first model, with modifications
at a lower level. Specifically, within the attention layers, scalar product operations are
divided, with half performed on spatial tokens and the remaining half on temporal tokens.

Among these architectures, the second one, Factorized Encoder, yields the most
promising results.

5.3. Results

After the selection of the different models, our next undertaking is to initiate the
training process for these models, with the intention of subsequently testing them using the
test subset from the Biovid dataset. The outcomes of this testing are presented in Table 3.

Table 3. Results for the various models on the Biovid test set.

Model Accuracy Loss Training Loss

TimeSformer 23.05% 1.60 1.64
VideoMAE 25.06% 1.58 1.56

ViViT 30.07% 1.49 1.49

After conducting the experiments, we can conclude that, within the utilized dataset,
analyzing the context of the entire video does not yield the anticipated results. This can be
attributed to the fact that the videos used only capture the patient’s face, revealing signs of
pain during very specific moments (frames).

The application of these techniques may prove highly beneficial when working with
other types of videos that offer more contextual information, such as preceding actions that
trigger the patient’s specific reactions.

6. Discussion

Pain detection and assessment play a pivotal role in healthcare, aiding clinicians
in understanding and addressing patients’ physical discomfort and emotional distress.
Traditional methods of pain evaluation often rely on subjective self-reporting, which can be
challenging when dealing with individuals unable to communicate effectively or accurately
express their pain levels. The results presented in this study highlight the ability to use facial
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expressions to assess pain using different data sources and models, such as Transformer-like
architectures. We show how these methods hold promise for distinguishing different levels
of pain. However, our exploration also sheds light on the crucial limitations and factors
that influence the relevance and efficiency of these approaches.

6.1. Temporal Context and Transformer-Style Architectures

While our work showcases the potential of leveraging facial expressions for pain
detection using Transformer-style architectures, the limitations surrounding the temporal
context within the BioVid database raise important considerations. The incorporation of
temporal information did not yield a substantial improvement in pain detection accuracy.
This indicates the complexity of capturing nuanced changes in pain expressions over time,
which remains a challenge for current video classification models. Further exploration is
needed to refine temporal modeling techniques that better capture the dynamic nature of
pain expressions.

6.2. Context Impact

One notable insight is the observation that this approach may find substantial utility
in scenarios where the source of pain is visually evident in the video. This implies that the
efficacy of the proposed method may be context-dependent, with its strength being more
pronounced when the pain-inducing event is visually conspicuous.

In light of these observations, we propose the exploration of multi-modal approaches
for enhanced pain detection accuracy. Combining facial expressions with physiological data
obtained through sensors capable of measuring direct physiological impulses could provide
a more comprehensive understanding of the patient’s pain experience. This integration of
different modalities may contribute to a more robust and reliable pain detection system.

6.3. Proposed Future Directions and Research Opportunities

Building on our findings, we propose exploring multi-modal approaches that combine
facial expressions with physiological data obtained through sensors capable of measuring
direct physiological impulses. Integrating multiple modalities, such as heart rate variability,
skin conductance, or brain activity, alongside facial expression analysis, could offer a more
comprehensive understanding of an individual’s pain experience. This integration holds
potential for creating a more robust and reliable pain detection system, surpassing the
limitations of visual cues alone.

7. Conclusions

In conclusion, our extensive exploration of pain assessment methods yielded encour-
aging results. By merging data from biomedical sensors and state-of-the-art computer
vision techniques, our study established a new benchmark in the field. The thorough
analysis of both the UNBC-McMaster and BioVid datasets provided a solid foundation for
future research with an accuracy of over 30% using video prediction models and over 93%
for the 16 classes of the UNBC-McMaster dataset.

Our examination of the sensor-derived data indicates that the identifiable features
within the selected signals provide sufficient insight to assess increased pain levels in
patients. However, additional data may be required for the accurate detection of lower
pain thresholds. Regarding the analysis of facial expressions in the current framework, it
appears that these features can be exploited by Transformer-like architectures to measure
the level of pain. However, the accuracy of the video classification models suggests that
the temporal context within the BioVid database may not significantly improve the results.
Nonetheless, this methodology could prove to be significantly influential when applied to
videos that explicitly depict the source of pain (e.g., a person falling to the ground).

In addition, we advocate the adoption of multimodal approaches that fuse a patient’s
facial expressions with data from sensors capable of directly measuring physiological
impulses. Alternatively, the use of algorithms that detect variations in video inputs, such
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as optical flow, has shown remarkable effectiveness in other video classification tasks
and could serve as a valuable avenue for exploration. However, the subjective nature
of pain perception demands a comprehensive understanding of cultural, psychological,
and contextual factors.
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