12,100 research outputs found

    Magnetic transitions in Pr2NiO4 single crystal

    Get PDF
    The magnetic properties of a stoichiometric Pr2NiO4 single crystal have been examined by means of the temperature dependence of the complex ac susceptibility and the isothermal magnetization in fields up to 200 kOe at T=4.2 K. Three separate phases have been identified and their anisotropic character has been analyzed. A collinear antiferromagnetic phase appears first between TN = 325 K and Tc1 = 115 K, where the Pr ions are polarized by an internal magnetic field. At Tc1 a first modification of the magnetic structure occurs in parallel with a structural phase transition (Bmab to P42/ncm). This magnetic transition has a first‐order character and involves both the out‐of‐plane and the in‐plane spin components (magnetic modes gx and gxcyfz, respectively). A second magnetic transition having also a first‐order character is also clearly identified at Tc2 = 90 K which corresponds to a spin reorientation process (gxcyfz to cxgyaz magnetic modes). It should be noted as well that the out‐of‐phase component of χac shows a peak around 30 K which reflects the coexistence of both magnetic configurations in a wide temperature interval. Finally, two field‐induced transitions have been observed at 4.2 K when the field is directed along the c axis. We propose that the high‐field anomaly arises from a metamagnetic transition of the weak ferromagnetic component, similarly to La2CuO4

    Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks

    Full text link
    (Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. The aim of this paper is to study the "synapses" between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes have similar average X-ray spectra within each class, but these average spectra can be distinguished from class to class. The S2 (L1.8) class is linked to the S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2, T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class albeit with larger fractions of SB-like component. This SB-like component is the contribution of the star-formation in the host galaxy, which is large when the AGN is weak. An AGN-like component seems to be present in the vast majority of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like component. This trained ANN could be used to infer optical properties from X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only in the full version of the paper here: https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd

    Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Get PDF
    Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate) and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids) reinforced with polylactide (PLA) fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale) and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan). Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures

    Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyreness): a possible linkange between the Variscan and Cimmerian cycles?

    Get PDF
    In southern Europe and the western Mediterranean, Permo-Carboniferous magmatism is well represented in areas of Iberia, the Alps, Sardinia and the Balkan Peninsula. In Iberia, the magmatism that has been related to the Variscan orogeny is associated with syn-orogenic events at ca. 350-315 Ma and post-orogenic at ca. 310-295 Ma. In the southern Pyrenees there is Permo-Carboniferous sedimentary basins with a significant volume of rhyolitic ignimbrites and andesitic flows. The Erill Castell-Estac, Cadí and Castellar de n’Hug basins are spatially associated with the Boí, Montellá and Vielha granites and the Cardet dacitic dykes emplaced in Variscan basement rocks. U-Pb SHRIMP dating of zircons extracted from these granites, an andesitic flow, a dacitic dyke and six ignimbrites, revealed that magmatism was active from ca. 304 Ma to ca. 266 Ma. The scattering of zircon ages in each sample shows that the history of melt crystallization was prolonged and complex. The reported ages of the magmatic activity for the Southern Pyrenees in the range ca. 304-283 Ma (this study) fit in well with the time interval of magmatism related to the early North-dipping subduction of the Western Paleotethys Ocean, the subsequent development of Iberian orocline (Variscan cycle), and the large-scale bending and blocking of the Paleotethys Ocean subduction at East of Iberia.In paleogeographic reconstructions of the Permo-Carboniferous, Iberia is located in the core of Pangaea to the east of the probable Rheic Ocean suture and near the western end of the subduction zone of the Paleotethys Ocean. The emplacement in Iberia of granites with ca. 310-278 Ma age occurred after the collision of Laurussia and Gondwana, when the subduction of the Rheic Ocean was inactive. From a Variscan-cycle perspective, the Permo-Carboniferous magmatism of the Pyrenees has been considered as post-orogenic. However, global paleogeographic reconstructions put Iberia in between the Rheic Ocean suture and the still active subduction zone of the Western Paleotethys Ocean. Therefore, the Permo-Carboniferous magmatism of Iberia, from a Cimmerian-cycle perspective, may have accompanied the closing of the Paleotethys Ocean. During this stage of the evolution of Pangaea, the east of Iberia was geologically affected by the active subduction zone of the Paleotethys Ocean. The period ca. 310-285 Ma is marked by the development of an orocline that extends from Iberia to Armorica. The northwards subduction of the western corner of Paleotethys probably caused orocline formation and consequent large-scale bending and blocking of Paleotethys subduction immediately east of Iberia. The Permo-Carboniferous magmatism of Iberia, coeval with this tectonic evolution, shows a mixed imprint of subduction and delamination geochemical signatures. Although this may seem controversial, in our view the magmatic activity preserved in the Southern Pyrenees could provide the missing link between the development of the Iberian orocline and the continued subduction of easternmost segments of the Paleotethys Ocean (Cimmerian cycle) during the evolution of Pangaea

    Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068

    Get PDF
    We present sub-arcsecond 7.5-13 μ\mum imaging- and spectro-polarimetric observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio CANARIAS. At all wavelengths, we find: (1) A 90 ×\times 60 pc extended polarized feature in the northern ionization cone, with a uniform \sim44^{\circ} polarization angle. Its polarization arises from dust and gas emission in the ionization cone, heated by the active nucleus and jet, and further extinguished by aligned dust grains in the host galaxy. The polarization spectrum of the jet-molecular cloud interaction at \sim24 pc from the core is highly polarized, and does not show a silicate feature, suggesting that the dust grains are different from those in the interstellar medium. (2) A southern polarized feature at \sim9.6 pc from the core. Its polarization arises from a dust emission component extinguished by a large concentration of dust in the galaxy disc. We cannot distinguish between dust emission from magnetically aligned dust grains directly heated by the jet close to the core, and aligned dust grains in the dusty obscuring material surrounding the central engine. Silicate-like grains reproduce the polarized dust emission in this feature, suggesting different dust compositions in both ionization cones. (3) An upper limit of polarization degree of 0.3 per cent in the core. Based on our polarization model, the expected polarization of the obscuring dusty material is \lesssim0.1 per cent in the 8-13 μ\mum wavelength range. This low polarization may be arising from the passage of radiation through aligned dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA
    corecore