35,684 research outputs found

    Fermion Analogy for Layered Superconducting Films in Parallel Magnetic Field

    Full text link
    The equivalence between the Lawrence-Doniach model for films of extreme type-II layered superconductors and a generalization of the back-scattering model for spin-1/2 electrons in one dimension is demonstrated. This fermion analogy is then exploited to obtain an anomalous H1H_{\parallel}^{-1} tail for the parallel equilibrium magnetization of the minimal double layer case in the limit of high parallel magnetic fields HH_{\parallel} for temperatures in the critical regime.Comment: 11 pages of plain TeX, 1 postscript figur

    Berezinskii-Kosterlitz-Thouless Transition in Spin-Charge Separated Superconductor

    Full text link
    A model for spin-charge separated superconductivity in two dimensions is introduced where the phases of the spinon and holon order parameters couple gauge-invariantly to a statistical gauge-field representing chiral spin-fluctuations. The model is analyzed in the continuum limit and in the low-temperature limit. In both cases we find that physical electronic phase correlations show a superconducting-normal phase transition of the Berezinskii-Kosterlitz-Thouless type, while statistical gauge-field excitations are found to be strictly gapless. The normal-to-superconductor phase boundary for this model is also obtained as a function of carrier density, where we find that its shape compares favorably with that of the experimentally observed phase diagram for the oxide superconductors.Comment: 35 pages, TeX, CSLA-P-93-

    Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1

    Get PDF
    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011, available on Science Express Web site (March 24th edition

    A Suzaku X-ray observation of one orbit of the supergiant fast X-ray transient IGR J16479-4514

    Get PDF
    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. About 80% of the short orbital period (Porb=3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state lasting the first 46 ks (1E-13 erg/cm2/s, 1-10 keV), consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of (6-7)x10^-12 erg/cm2/s punctuated by two structured faint flares with a duration of about 10 and 15 ks. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho=7E-14 g/cm3. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio Mdot_w/v_terminal = 7E-17 solar masses/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism is at work reducing the mass accretion rate. Different possibilities are discussed.Comment: Accepted for publication in MNRAS. 10 pages, 5 figure

    Direct Measurement of Periodic Electric Forces in Liquids

    Full text link
    The electric forces acting on an atomic force microscope tip in solution have been measured using a microelectrochemical cell formed by two periodically biased electrodes. The forces were measured as a function of lift height and bias amplitude and frequency, providing insight into electrostatic interactions in liquids. Real-space mapping of the vertical and lateral components of electrostatic forces acting on the tip from the deflection and torsion of the cantilever is demonstrated. This method enables direct probing of electrostatic and convective forces involved in electrophoretic and dielectroforetic self-assembly and electrical tweezer operation in liquid environments

    Modeling and forecasting gender-based violence through machine learning techniques

    Get PDF
    Gender-Based Violence (GBV) is a serious problem that societies and governments must address using all applicable resources. This requires adequate planning in order to optimize both resources and budget, which demands a thorough understanding of the magnitude of the problem, as well as analysis of its past impact in order to infer future incidence. On the other hand, for years, the rise of Machine Learning techniques and Big Data has led different countries to collect information on both GBV and other general social variables that in one way or another can affect violence levels. In this work, in order to forecast GBV, firstly, a database of features related to more than a decade’s worth of GBV is compiled and prepared from official sources available due to Spain’s open access. Then, secondly, a methodology is proposed that involves testing different methods of features selection so that, with each of the subsets generated, four techniques of predictive algorithms are applied and compared. The tests conducted indicate that it is possible to predict the number of GBV complaints presented to a court at a predictive horizon of six months with an accuracy (Root Median Squared Error) of 0.1686 complaints to the courts per 10,000 inhabitants—throughout the whole Spanish territory—with a Multi-Objective Evolutionary Search Strategy for the selection of variables, and with Random Forest as the predictive algorithm. The proposed methodology has also been successfully applied to three specific Spanish territories of different populations (large, medium, and small), pointing to the presented method’s possible use elsewhere in the world
    corecore