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Abstract: Gender-Based Violence (GBV) is a serious problem that societies and governments must
address using all applicable resources. This requires adequate planning in order to optimize both
resources and budget, which demands a thorough understanding of the magnitude of the problem,
as well as analysis of its past impact in order to infer future incidence. On the other hand, for years,
the rise of Machine Learning techniques and Big Data has led different countries to collect information
on both GBV and other general social variables that in one way or another can affect violence levels.
In this work, in order to forecast GBV, firstly, a database of features related to more than a decade’s
worth of GBV is compiled and prepared from official sources available due to Spain’s open access.
Then, secondly, a methodology is proposed that involves testing different methods of features
selection so that, with each of the subsets generated, four techniques of predictive algorithms are
applied and compared. The tests conducted indicate that it is possible to predict the number of GBV
complaints presented to a court at a predictive horizon of six months with an accuracy (Root Median
Squared Error) of 0.1686 complaints to the courts per 10,000 inhabitants—throughout the whole
Spanish territory—with a Multi-Objective Evolutionary Search Strategy for the selection of variables,
and with Random Forest as the predictive algorithm. The proposed methodology has also been
successfully applied to three specific Spanish territories of different populations (large, medium,
and small), pointing to the presented method’s possible use elsewhere in the world.

Keywords: gender-based violence; machine learning; information and communication technologies;
multi-objective evolutionary search; random forest; time series forecasting

1. Introduction

Right now, Intimate Partner Violence (IPV) is a significant issue for a large number of women
around the globe. Its impact incorporates physical, sexual, and mental mischief by a current or
previous partner, in any form or means. As per UN (United Nations) reports, practically 35% of
women around the globe have encountered some sort of physical or sexual violence [1], while similar
insights find that some 75% of women face physical and sexual hostility. This paper is looking to
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highlight this issue. Unfortunately, in 2017, nearly 87,000 women were executed globally, of whom 58%
(50,000) were murdered by their other half or by different family members (https://www.unodc.org/).

Lately, a great deal of research has focused on IPV and its association with many related issues.
The scope of this analysis incorporates the resources utilized by the victims (perhaps better referred to
as ‘survivors’) [2], as well as examining the boundaries involved, and also the public policies focused
on preventing and overseeing Gender-Based Violence (GBV).

The Council of the Europe Convention on preventing and combating violence against women,
including domestic violence (opened in 2011 and in effect since 1 August 2014)—better known as
the Istanbul Convention—emphasizes in Article 17 that countries shall encourage the Information
and Communication Technologies (ICT) sector especially to participate in policies to prevent violence
against women.

In 2020, ICT and Machine Learning (ML) have clearly progressed and had their impact felt
throughout all avenues of society, and all around the world. In the mid-1990s, Haraway [3] predicted
the social changes and the impact, particularly for sex-related issues, that would come with ICT.

Fortunately, both ICT and ML strategies offer additional opportunities for preventing and dealing
with these kinds of violence. Innovative advances, software, and new ideas—for example, the Internet
of Things (IoT) and cloud-computing methodologies—offer a wide scope of opportunities for managing
violence against women [4], especially after being effectively integrated with different fields, for example,
e-health [5]. Systems for advanced data processing—with Machine Learning (ML) and Big Data [6] as
two key examples—can likewise be utilized to battle gender violence.

Luckily, in recent years, governments have recognized the power of data analysis and its potential
for policy planning, which has resulted in efforts to systematically collect information on a wide
range of topics spanning many decades. In this regard, Spain has been attentive to these trends and,
since 2003, has been collecting valuable data via the National Institute of Statistics (Instituto Nacional
de Estadística, INE), structured as a time series related to violence against women that now makes it
possible to analyze GBV and its relationship to other variables.

This work puts ML techniques into practice in order to model and forecast the incidence of GBV
according to a predictive horizon of half a year, achieved by extracting the variables that have the
highest influence on the existence of such violence from a total of more than 30 features extracted from
a Spanish national database. In addition, the possibility of forecasting GBV is analyzed using four
predictive algorithms so that governments can improve their policy planning on this issue, thereby
optimizing and maximizing strategies.

To fulfill this paper’s objectives, Section 2 describes previous contributions based on ML
applications for improving public policies and actions against GBV. Section 3 explores different
techniques in the field of features selection and forecasting in time series. Section 4 explains the nature
of the collected database that will be analyzed with the methodology proposed in Section 5. The results,
in Section 6, include the performance of the modeling stage under different approaches added to a
test of forecasting GBV and its accuracy under certain methods. Finally, Section 7 draws conclusions,
suggests future works, and closes the document.

2. Related Works

ML is an application of Artificial Intelligence (AI) that provides ICT-based systems with the
ability to automatically learn and improve from experience without being explicitly programmed.
These algorithms are able to extract knowledge from data and then, after a learning phase,
to develop a complex task. Diagnosis, analysis, and forecasting are among the possible applications,
alongside many others. Consequently, therefore, raw data can be utilized to form new knowledge.

ML has been widely applied in the field of GBV. For example, smart speakers implement
AIs that are equipped with modules for voice recognition based on ML. This is fundamental for
protecting survivors, as voice recognition can distinguish the orders and keywords given by women
suffering from IPV—or by the offenders—then obtain the requested information or warn the emergency
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channels. Islam et al. [7] partially based their work’s proposal on this idea. ML can also recognize
abnormal physical activity thanks to classification techniques. Hegde et al. [8] used the data collected
from wearable sensors to identify the activities of daily life. This could also be useful for detecting
unexpected situations, such as potential aggression.

ML techniques are also powerful in modeling data and for making predictions that can be very
helpful for improving the management of all kinds of daily life issues. Glaeser et al. [9] used ML to
predict educational (and other) outcomes in a database of dysfunctional families, producing predictive
algorithms for city governments and envisioning the predictions as a first step toward generating
new insights. So, ML has the capability of analyzing years of collected data and model behaviors,
with which it is possible to adapt future strategies and, for example, to reorganize resources, or adapt
and optimize public budgets [10].

Research has applied ML to various questions posed by political science, demographics, economics,
and criminology [11], via which the limitations of the linear modeling framework and the criteria
applied for evaluating findings are discussed. Kleinberg et al. [12] use an ML model to predict
the patients who will benefit the most from joint replacement surgery from a dataset of possible
beneficiaries. Cederman and Weidmann [13] investigate whether ML can predict armed conflict,
while Beck et al. [14] previously used neural networks to forecast militarized international disputes.
Furthermore, Brandt et al. [15] employed automated coding to forecast Palestinian–Israeli conflicts,
and Perry [16] applied the Random Forest technique to predict violent episodes in Africa. These scholars
use their predictions as a starting point for disentangling the process in question and for pushing
existing theories.

Kleinberg et al. [17], for example, illustrate how these kinds of predictions can help us to
understand the process underlying judicial decisions. The authors began by training a model to
predict judges’ bail-or-release decisions in New York City, USA. Their findings show that judges can
overweigh current charges, releasing high-risk cases if their present charge is minor and detaining
low-risk ones if the present charge is serious. From a policy standpoint, the authors’ predictive model,
if used in practice, promises significant welfare gains over human decisions without eroding important
social values (e.g., racial equality): reducing reoffending rates by 25% with no increase in jailing rate or,
alternatively, pulling down the jailing rate by 42% with no increase in reoffending rate. In the same
sense, Coglianese and Lehr [18] introduced the idea of ‘cyberdelegation’, as part of a debate over
whether AI can be introduced as a support for court processes.

So, the possibilities of ML becoming applied to public policies and as support for decision-making
are clear. Indeed, specifically, ML algorithms have also been applied to the field of violence and crime,
with some efforts to do so going back more than 30 years, e.g., analysis via linear regressions time series
to reflect the number of arrests per day [19]. Ozkan [20] studied the possibility of future recidivism in
offenders, applying neural networks, and achieving good results. The insights offered by algorithms
can be used to decide about parole in interpersonal violence situations [21]. For example, Berk et al. [22]
used Random Forest algorithms and concluded that approximately 20% of those released after an
arraignment for domestic violence are arrested within two years for a new domestic violence offense.
Their results also proposed an important ranking of risk factors for multiple assaults.

In order to obtain a prediction accurate enough, it is necessary to start with an adequate database.
Fortunately, the rise of Big Data has led to the collection of all kinds of data over the last few decades,
in particular regarding how society develops in terms of wealth, social stability, employment, culture, etc.
Although GBV itself has been included as a feature to forecast crime, as shown in the work of Holcomb
and Sharpe [23] where police calls were forecasted, violence against women has also been the variable
studied in relation with other crucial factors, like unemployment [24] and the increasing recidivism
among unemployed suspects. However, other less direct circumstances have also become the subject
of study, such as in the work of Cohn, where the influence of seasonal factors on domestic violence
incidence was analyzed [25].
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It is important, therefore, to bear in mind the intersectional nature of GBV. Many aspects can have a
hand in influencing the course of violence, including poverty or health status [26]. Thus, although social
wealth and the family’s economic situation are drawn upon as the main characteristics involved,
the wide variety of additional factors that can be found make a multidisciplinary approach necessary,
incorporating environment factors, education, safety and security, health, and also, correlatively,
the interaction of professionals in each sector [27]. Many of these variables are already taken into
account when planning policies related to violence management [28].

Some previous papers have focused on the specific field of forecasting GBV by applying ML.
In 2017, Thornton [29] tried to forecast domestic homicides and serious violence by using a database
reflecting these situations in the county of Dorset (United Kingdom) and evaluating the police protocol.
In doing so, he found that predicting deadly domestic violence dependent on insight from earlier police
contacts did not seem possible at present, given the discovery that less than 50% of these cases had
occurrences of earlier police contact and that, when contact occurred, the connections were evaluated
by the protocol as not being of a high hazard in 89% of cases.

Chalkley and Strang [30] reproduced the methods used by Thornton and found false-negative
risk assessments in 67% of the deadly violence cases that had prior contact with the police but were
not classified within the existing protocol as high risk. They proposed that possible alternative
predictors regarding sex, health, and other descriptors could improve the performance of the prediction.
But this related data needs to be collected over a long period in order to obtain knowledge.
Delgadillo-Alemán et al. [31] used the data provided by the Mexican Women’s Institute, combined with
other local organizations, and developed a mathematical deterministic model, which took into account
variables like violence index, violence in childhood, the acceptance of machismo, and external factors,
among others. By utilizing mathematical models, the authors showed their model’s capability for
diagnosing GBV risk in a certain couple. Although an interesting approach, its focus was on differential
equations, so it does not explore the whole of society in a certain territory.

Spain, as with many other countries, has been gathering compelling and interesting data for decades
relating to many aspects of society. In this country, we can find the previously mentioned INE which,
in its current form, was founded in 1945, but its predecessor, the Kingdom’s Statistical Commission,
dates back to 1856. On its webpage, a range of time-series data is freely available and ready to
be downloaded. Some authors have taken advantage of this availability in order to study the GBV
phenomenon, using this database combined with other sources. De la Poza, Jódar, and Barreda [32],
for example, proposed a mathematical model to infer hidden GBV incidence. Such work includes
factors like the social awareness of men, age, drug consumption, and statistics of murdered women,
all of which went into building a deterministic model and estimating the hidden population of
aggressors. Unfortunately, however, this is not quantified by official statistics via which the accuracy
of the model can be compared.

In conclusion, this review of the existing literature allows us to determine that the possibilities of
ML have been widely proven as useful in making decisions related to social management, considering
that these techniques are able to predict incidences of some public problems. We can also assess
that the utility of ML in GBV is beyond doubt and, in this sense, some remarkable works have been
identified. Despite this, however, we feel that the potential of ML in domestic violence forecasting for
society as a whole is still unexplored and that the power of collected data is still insufficiently exploited.
We think that, as previously shown regarding other disciplines, ML can be utilized to make useful
GBV predictions for a certain territory, thereby optimizing the use of public resources. In this sense,
to the best of the authors’ knowledge, no ML-based study for the specific forecasting of GBV has been
previously published that analyzes the features that most influence its appearance in a social group,
that carries out a fair comparison between predictive ML algorithms applied to the same extensive
database, and that considers differently populated territories. In any case, we have the feeling that
many studies not have made a deep comparison of different methods of machine learning, both for
selecting the most important variables and predictive techniques, and in this work we want to go
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beyond the works presented and check, not only if it is possible to predict the incidence of gender
violence, but also what technique would be more appropriate, making a comparison. Regarding these
deficiencies, in this work, the issues mentioned are addressed through the use of a vast Spanish GBV
database disaggregated by territories, which should allow for the proposed methodology to be applied
to any other country/region/city.

3. Feature Selection and Forecasting Time Series

3.1. Feature Selection Techniques

Feature selection (FS) is the process of choosing the most relevant and pertinent features from
an arrangement of features in a certain given dataset. For a dataset with d input features, the feature
selection process brings about k features to such an extent that k < d, where k is the smallest arrangement
of critical and applicable features [33]. This results in quicker ML algorithm training, the reducing
of a model’s complexity so it is simpler to decipher, better forecasting power, and the decreasing of
overfitting by choosing the correct arrangement of features, among others.

There are three types of feature selection procedures [34]:

- Wrapper methods
- Filter methods
- Embedded methods

Wrapper methods use factor combinations to decide forecasting force. Normal wrapper
strategies include: Subset Selection, Forward Stepwise Selection, and Backward Stepwise Selection
(Recursive Features Elimination—RFE) [35]. The wrapper technique will locate the best mix of features,
testing each variable against test models it builds with them to assess the outcomes [36]. Of the
three strategies, this is more demanding computationally. In the Subset Selection strategy, we fit the
model with every potential combination of N features [37]. With Forward Stepwise Selection, however,
we first begin with a null model, i.e., beginning with one model variable. At this point, features are
added one at a time with the best model picked depending on a metric (i.e., a valuation of the error) [36].
In this strategy, once the predictor is chosen, it never drops in the second step. This is done until
the best subset of features is chosen, following a stopping criterion that establishes when the feature
selection process must finish. In Backward Stepwise Selection (or Recursive Feature Elimination),
the method works the opposite in that it wipes out features. As they are not run on each combination of
features, they are less computationally concentrated by a significant degree when compared to straight
Subset Selection [38]. Fundamentally, this is the inverse of Forward Stepwise selection. It begins with
all predictors and, afterward, drops one feature at a time before selecting the best model. Likewise,
the computational effort is fundamentally the same as that of Forward Selection. Filter and Wrapper
strategies have been used and compared in some studies [39].

Filter methods are likewise considered as a Single Factor Analysis. By utilizing this technique,
the predictive power of each individual variable (feature) is assessed, while different statistical methods
can be utilized to decide predictive force [40]. One such pathway is achieved by correlating the feature
with the objective (i.e., what we are foreseeing), with the features with the highest correlation being the
most effective.

In contrast, Embedded Method (Shrinkage) is an inbuilt variable selection strategy, within which
the features are not chosen or dismissed. With this approach, some value parameter controls (weights)
are carried out, making it possible to name the LASSO (Least Absolute Shrinkage and Selection
Operator) Regression. With this technique, regularization is carried out and some coefficients of a
regression tend to be zero [41]. Therefore, as a portion of the coefficients tends to be equivalent
to zero, we can drop or reject such variables. Another example is that of Ridge Regression
(Tikhonov regularization), which includes a punishment that rises to the square of the greatness
of coefficients [42]. All coefficients are shrunk by the same factor (so no single predictor is eliminated).
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Some of these techniques will be applied in our work, in which we use a Multi-Objective
Evolutionary Search Strategy [43] and also a Ranker Strategy [44], minimizing the metric that could
be the Root Mean Squared Error (RMSE) and also reducing the features set. The two different types
of approaches in these two groups are univariate and multivariate. Univariate methods are faster
and easily scalable but ignore variable dependencies. On the other hand, multivariate techniques
are able to model feature dependencies but are slower and less scalable than univariate ones [45].
The chosen techniques will be exposed in detail in the Methodology Section. By minimizing the metric,
it is possible to improve the forecasting stage.

3.2. Forecasting

After the FS is complete, the forecasting task in time series can be deployed. In 1996, Wolpert [46]
stated that, without deep information about the underlying model, there is no certain model that will
always achieve better performance than any other. As a result, a proper approach can be made by
trying out various techniques, then determining which model operates better. Consequently, we have
compiled linear and nonlinear techniques, with a focus on the most promising algorithms.

Linear Regression is one of the easiest approaches. This family of models attempts to find
an estimation of the model parameters so that the sum of the squared errors is minimized [47].
Some modifications include partial least squares and penalized models such as Ridge Regression
or LASSO.

A significant advantage of these models is that they are highly interpretable. The coefficients
indicate relationships and they are usually easy to compute, so the use of several features is affordable.
On the other hand, they can be limited in their performance [48]. They achieve good results when the
relationship between the predictors and their response falls along a hyperplane. However, if there are
relations of a higher order, like quadratic, cubic, and alike, then the nonlinear relationships may not be
properly captured with these models and so other approaches are required [49].

Some other models are capable of understanding nonlinear trends and, fortunately, the exact form
of nonlinearity is not required to be known before building the model. Support Vector Machines (SVM)
is of one the most popular examples in this category. These are dual learning algorithms that process
data merely by computing their dot-products [50], and these dot-products between variable arrays can
be properly computed by a kernel function [51]. Given this function, the SVM learner attempts to find
a hyperplane that separates the examples while maximizing the separation (margin) between them.
SVMs are well known to be resilient to over-fitting and to keep a good generalization performance due
to the max-margin criterion used in the optimization process. In addition, while other solutions may
only provide a local optimum, SVMs are guaranteed to converge to a global optimum because of the
corresponding convex optimization formulation [52].

Besides this, Regression Trees make up a family of modeling algorithms that is getting a lot of
attention in recent years. Tree-based models use one or more ‘if-then’ statements for the predictors that
will subsequently partition the data. Within these subsets, a model is used to forecast the outcome [53].
From a statistical point of view, reducing correlation among predictors can be achieved by adding
randomness to a tree construction process, which is the basis of the Random Forest (RF) technique [54].
Each model in the set is then used to build a prediction for a new dataset, with these predictions then
being averaged to provide the final forecast.

An RF model performs a variance reduction by selecting complex and strong learners that exhibit
low bias. This leads to an improvement in error rates and, in addition, RF is robust to a noisy
response [55].

Other comparative strategies, for example, Gaussian Processes (GPs) with Radial Basis
Function Kernels (RBF) [56]—which permit an overall consistency and a non-limited number of
basic functions—are infrequently utilized, albeit a few previous approaches have used this strategy
with promising conclusions [57].
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GPs represent a nonparametric methodology focused on modeling perceptible reactions from
different training data points (function values) as multivariate normal random features [58].
A supposition is made of a priori distribution for such function data values, which will ensure
the function’s smoothness properties. To be explicit, there will be a high correlation between the
two function values when there is closeness (in the feeling of Euclidean separation) between the
comparing input vectors and if they decay as they diverge. Later, the distribution of unpredicted
function data may be calculated from the use of an assumed distribution with the application of simple
probability manipulation.

4. Database, Available Features, and Target to Be Forecasted

In order to study the relationship between different time series with data regarding GBV and
other variables, we have accessed the database of Spanish INE (www.ine.es), where it is possible to
freely find data from several decades related to demography, economy, employment market, education,
energy, and so on. The data series are usually grouped by population groups (always disaggregated
by sex), and also by territorial units. The frequency of data reporting can be monthly, quarterly,
or annually. For our purposes, we have assembled the data by provinces and also the country’s total.
Spain has 50 provinces and 2 autonomous cities. We decided to select some examples as study cases
then compare them with the evolution of the total country. With regard to the timescales, we decided
to divide the data monthly as, on the one hand, this is the usual way of presenting the data in our
database and, on the other hand, it offers sufficient granulometry to show the variable evolution.
In Table 1, a brief description of the variables and the units utilized can be observed. All variables have
been referred to population units (per capita) in order to make a fair comparison between territories.
Although the Spanish Government has been collecting GBV casualties’ data since 2003, we begin our
database in 2009 in order to obtain a complete overview by avoiding any gaps in the early data of some
variables. We also seek to reflect the changes introduced by the Organic Law on Measures Regarding
Comprehensive Protection against Gender-Based Violence (LO 1/2004, December 28, 2004), some of
whose measures were not fully implemented until some years later. Likewise, the most recent data
may have a delay in their incorporation and be subject to revision, so full series data up to March 2020
have been used. With this approach, we have studied more than a decade of data.

The chosen features (among the available ones) are related to:

- Territorial: We study the time-series data for the entire country but also some provinces as
examples, in order to test the validation of our purpose.

- Date and season: We will explore the evolution of GBV within years, month by month. We will also
include the quarter to evaluate the influence of the season, as indicated by previous works [59].

- Demography and population: Considering population can offer insights into the influence of
big population areas, but some changes in demography can also provide explanations of the
course of couples [60]. In this manner, marriages, separations, and births are included, but also
the proportion of men vs. women.

- Specific variables related to GBV: In this sense, there are some interesting variables available,
such as:

# Calls to the special number 016. This is a phone number dedicated to providing information
to survivors, but also to manage assistance (imperative or not).

# Complaints: In particular, we will study the number of complaints presented to a court as
the independent variable to be modeled and forecasted. Ultimately, we feel that complaints
express the incidence of worst cases.

# Security devices for tracking offenders: This kind of device is proposed by a judge in
high-risk cases.

# Protection orders: Also ordered by a judge in cases of high risk.

www.ine.es
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# Level of risk of aggression for the survivor: After a police evaluation, the cases are classified
as unappreciated, low, medium, high, and extremely high.

# Fatalities: Murdered victims of GBV.

- Wealth and employment: The level of wealth in a region can be related to the levels of crime and
violence. Similarly, levels of unemployment (male and female) can give an idea of the level of
economic stability [61]. We differentiate between the inactive population (retired, disabled) and
also the employed and unemployed population.

- Education level: The relationship of illiteracy (male and female) and other educational levels
(primary, secondary, university) with violence will also be studied, as previous literature indicates
this point [62].

Table 1. Description of the features.

Variable Description Units

PROVINCE Spanish province under study (or
the whole country) (Categorical)

DATE Data collection date Month
QUARTER Quarter of the year Quarter

YEAR Year of data collection Year
POP_TOT Total population of the province Units

RATIO_MvsW Ratio Population of men/women Adimensional
MARRIAGES Number of new weddings Units/10,000 pop

SEPARATIONS Number of separated marriages Units/100,000 pop
BIRTHS Number of newborn children Units/1000 pop

CALLS

Calls to special telephone number
016

(requests for information and
assistance)

Units/10,000 pop

COMPLAINTS Complaints made to a Court Units/10,000 pop

DEVICES Security devices for tracking
offenders Units/100,000 pop

PROTECTION_ORDER Restraining order for survivors
decreed by a judge Units/10,000 pop

RISK_UN Survivors with unappreciated risk
after police valuation Units/10,000 pop

RISK_L Survivors with low risk after
police valuation Units/10,000 pop

RISK_M Survivors with medium risk after
police valuation Units/10,000 pop

RISK_H Survivors with high risk after
police valuation Units/10,000 pop

RISK_EH Survivors with extremely high risk
after police valuation Units/10,000 pop

FATALITIES Murdered victims of GBV Units/1,000,000 pop
GDP Gross Domestic Product per capita €/10,000 pop

EMPL_MEN Employed men Units/100 pop
UNEMPL_MEN Unemployed women Units/100 pop

INACT_MEN Inactive women Units/100 pop
EMPL_WOM Employed women Units/100 pop

UNEMPL_WOM Unemployed women Units/100 pop
INACT_WOM Inactive women Units/100 pop

ILLIT_MEN Illiterate men Units/100 pop
ILLIT_WOM Illiterate women Units/100 pop

PRIM_ED_MEN Primary education men Units/100 pop
SEC_ED_MEN Secondary education men Units/100 pop

HIGH_ED_MEN Higher education men Units/100 pop
PRIM_ED_WOM Primary education women Units/100 pop
SEC_ED_WOM Secondary education women Units/100 pop

HIGH_ED_WOM Higher education women Units/100 pop

GBV: Gender-Based Violence.
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With this, we have built a database of almost 250,000 data examples, taking into account all
the months from January 2009 to March 2020 and the 52 Spanish territories plus the whole country.
Using all this data, we will carry out a feature selection and then forecast future GBV complaints.

5. Methodology

5.1. Territories under Study

As previously stated, a large amount of data is under consideration. The purpose of this work is
to study the possibility of forecasting GBV complaints so as to provide reliable information to optimize
public resources and to schedule actions in advance, thereby being useful for other countries—with the
necessary adjustments. In this sense, instead of proving our methodology in each and every
Spanish province, we will test our proposed procedure in some particular cases: the whole country
(Spain) and the three representative provinces of Madrid, Alicante, and Segovia—representing large,
medium, and low populations, respectively. In addition, each of them has its own and differentiated
characteristics in terms of location and economy, as well as idiosyncrasies and cultural aspects.

- Spain: A Mediterranean country and member of the European Union. The total population
consists of 47,329,981 people.

- Madrid: locating the homonymous capital city of Spain, with a population of 6,661,949 people,
is centered on the country’s map and has a dynamic economy.

- Alicante: In the east of Spain with a population of 1,858,683 people. It has a marked open and
Mediterranean character, medium-range age inhabitants, and a flourishing economy.

- Segovia: An inland province located in the west of Spain with a population of only 153,342 people
and an aging population.

5.2. The Waikato Environment for Knowledge Analysis (WEKA)

The Waikato Environment for Knowledge Analysis (WEKA v.3.8) is free software developed at
the University of Waikato, New Zealand (https://waikato.github.io/weka-wiki/) and licensed under
the GNU (GNU’s Not Unix) General Public License. WEKA contains a collection of visualization tools
and algorithms for data analysis and predictive modeling, together with graphical user interfaces that
offer easy access to these functions. The software also supports several standard data-mining
tasks—more specifically, data preprocessing, clustering, classification, regression, visualization,
feature selection, modeling, and forecasting.

The use of WEKA facilitates data entry, algorithm execution, and visual context in the management
of the entire process. This software has been successfully applied many times before and is still being
applied in recent literature. Thus, Hussain et al. used it in 2018 to study educational aspects with data
mining techniques [63], or Kiranmai et al. to classify electrical power problems [64]. WEKA software
is booming, and new modules are developed every year, like the one presented by Lang et al. in their
2019 work on deep learning [65].

5.3. Computer Hardware

Due to the computational demands of the ML algorithms, they have been executed using a
computer equipped with an AMD Ryzen 7 1700X processor, operating at 3.8 GHz with 32 GB DDR4
RAM at 2666 MHz CL19 and a Solid-State Disk Samsung 970 Evo Plus M.2 1000 GB PCI-E 3.0.

5.4. Data Cleaning, Regularization, and Lagged Variables

The above-mentioned database should be transformed in due course to provide the proper inputs
of feature selection algorithms. The values are cleaned, and some gaps have been completed. In order
to later make a fair comparison between the whole country and some provinces (which will become
study cases), all the features were divided by the population (hundreds, thousands, tens of thousands).

https://waikato.github.io/weka-wiki/
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As some features could have a delayed influence, they were given six lagged values (which
means taking into account the last six months), except for the categorized and date features.
The TimeSeriesLagManager routine of WEKA allows for easily creating as many lagged variables
as required.

5.5. Features Selection

WEKA offers an intuitive graphical environment for carrying out a feature selection. The module
AttributeSelection allows for specifying different Search Methods and Attribute Evaluators, with some
combinations being tested and then evaluated at the forecasting stage. The features set that provides a
more accurate prediction will become the chosen features. A short introduction to FS methods was
presented in Section 3.1.

5.5.1. Search Methods

As stated, we use two searching methods: The Multi-Objective Evolutionary Search Strategy and
also a Ranker Strategy.

- Multi-Objective Evolutionary Search Strategy (MOES): In particular, we execute the multi-objective
evolutionary algorithm known as the Evolutionary NOn-dominated Radial slots-based Algorithm
(ENORA) as a selection strategy for a random search method, which minimizes the selected
features and also the RMSE [66].

- Ranker: This search strategy makes ranks of features one by one by utilizing their evaluations [67].

5.5.2. Attribute Evaluators

From the feature selection methods offered by WEKA, we will choose the two most popularly used:

- Wrapper methods. The WrapperSubsetEval routine implemented in WEKA will allow us to evaluate
some approaches via multivariate techniques. For univariate ones, we need to instead use the
ClassifierAttributeEval procedure. We will execute the following predictors:

# Linear Regression: This offers fast computation, fixing the coefficients for each feature.
# Random Forest [68]: As stated earlier, this is a tree-based algorithm well-known for

classification purposes.
# Instance-Based K-nearest neighbor algorithm (IBk) [69]: A K-nearest neighbors classifier,

this algorithm allows for selecting an appropriate value of K based on cross-validation but
is also able to carry out distance weighting.

- Filter Method. On the side of the univariate methods, we will use the Ranker operation according
to the below predictors:

# Relief Attribute (Rlf) [70]: Relief feature selection is based on scoring by the identification
of feature value differences between the nearest neighbor instance pairs.

# Principal Component Analysis (PCA) [71]: With this technique, a new set of orthogonal
coordinate axes is introduced, and, at the same time, the sample data variance is maximized.
This leads to the scenario that the other directions, in which the variance is minor, are less
important and, hence, can be removed from the dataset. PCA offers a very effective way
of transforming the data in a lower dimensionality, while also being able to reveal some
simplified patterns that often underlie the data.

5.5.3. Generated Subsets

With the exposed techniques, combined as indicated in Table 2, we can generate seven subsets
of reduced data that will be under evaluation in the forecasting task. In all the exposed cases of FS,
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the metric to be optimized is the RMSE. In addition, we will study the prediction strategies for
the original dataset, which are exposed in the following subsection. Table 3 compiles the different
commands used in WEKA, presenting the used parameters.

Table 2. Applied Features Selection techniques.

Search Method Attribute Evaluator Predictor Acronym

MOES Wrapper
Linear Regression MOES-LR

Random Forest MOES-RF
IBk MOES-IBk

Ranker
Wrapper (Classifier) Linear Regression Rnk-LR

Random Forest Rnk-RF

Filter
Relief Rnk-Rlf
PCA Rnk-PCA

MOES: Multi-Objective Evolutionary Search Strategy; LR: Linear Regression; RF: Random Forest; IBk: Instance-Based
K-nearest neighbor; Rlf : Relief Attribute; PCA: Principal Component Analysis.

Table 3. WEKA commands for Feature Selection.

Technique Command

MOES weka.attributeSelection.MultiObjectiveEvolutionarySearch -generations 20 -population-size
100 -seed 1 -algorithm 0 -report-frequency 20 -log-file “C:\\Program Files\\Weka-3-8”

Ranker weka.attributeSelection. Ranker -T -1. 8 -N -1

Wrapper LR weka.attributeSelection.WrapperSubsetEval -B weka.classifiers.functions.LinearRegression -F
5 -T 0.01 -R 1 -E RMSE – -S 0 -R 1.0E-8 -num-decimal-places 4

Wrapper RF
weka.attributeSelection.WrapperSubsetEval -B weka.classifiers.trees.RandomForest -F 5 -T
0.01 -R 1 -E RMSE – -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1
-num-decimal-places 4

Wrapper IBk
weka.attributeSelection.WrapperSubsetEval -B weka.classifiers.lazy.IBk -F 5 -T 0.01 -R 1 -E
RMSE – -K 1 -W 0 -A “weka.core.neighboursearch.LinearNNSearch -A
\”weka.core.EuclideanDistance -R first-last\”“ -num-decimal-places 4

Classifier LR
weka.attributeSelection.ClassifierAttributeEval -execution-slots 1 -B
weka.classifiers.functions.LinearRegression -F 5 -T 0.01 -R 1 -E RMSE – -S 0 -R 1.0E-8
-num-decimal-places 4

Classifier RF
weka.attributeSelection.ClassifierAttributeEval -execution-slots 1 -B
weka.classifiers.trees.RandomForest -F 5 -T 0.01 -R 1 -E RMSE – -P 100 -I 100 -num-slots 1
-K 0 -M 1.0 -V 0.001 -S 1 -num-decimal-places 4

Relief weka.attributeSelection.ReliefFAttributeEval -M -1 -D 1 -K 10

PCA weka.attributeSelection.PrincipalComponents -R 0.95 -A 5

MOES: Multi-Objective Evolutionary Search Strategy; LR: Linear Regression; RF: Random Forest; IBk: Instance-Based
K-nearest neighbor; Rlf : Relief Attribute; PCA: Principal Component Analysis.

5.6. Data Modeling and Forecasting

Once the seven reduced data subsets have been achieved, plus the original dataset, we will try to
make a prediction of future values, taking into account the past time series collected in each dataset.
We will attempt to forecast the complaints regarding GBV for a predictive horizon of six months but,
in order to have the real data to evaluate/validate the prediction, we will apply a Cross-Validation
(CV) method designed for time series [72]. We will train with a subset and then forecast the next six
months/steps (for which the data is available but not included in the training dataset).

For this purpose, we use the time series Forecasting (http://wiki.pentaho.com/display/

DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka) module of WEKA (v. 1.027).

http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
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For each dataset, we use the following approaches as forecasting algorithms, always indicating the
accuracy in terms of RMSE.

- Linear Regression (LR).
- Support Vector Machines (SVM).
- Random Forest (RF).
- Gaussian Process (GP).

A description of each method can be found in Section 3.2. Table 4 expresses the WEKA commands
and the parameters of each technique.

Table 4. WEKA commands for forecasting.

Technique Command

LR weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8 -num-decimal-places 4

RF weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1

SVM
weka.classifiers.functions.SMOreg -C 1.0 -N 0 -I
“weka.classifiers.functions.supportVector.RegSMOImproved -T 0.001 -V -P 1.0E-12 -L
0.001 -W 1” -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007”

GP weka.classifiers.functions.GaussianProcesses -L 1.0 -N 0 -K
“weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007” -S 1

LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian Process.

6. Results and Discussion: Forecasting Performance

The FS procedure generates seven subsets which, together with the original complete dataset,
will be tested using four forecasting techniques. In this way, we will execute 32 prediction tests for the
whole country (Spain), forecasting six months of the time series of GBV-complaints. In each experiment,
the predictive algorithm will first be trained with a subset of the data and then a predictive horizon of
the next six months/steps will be forecast, executing a CV. An example of this first phase resulting in a
trained model is shown in Figure 1, for the specific case of the subset MOES-RF and using RF as a
predictive technique. At a glance, it can be seen that there is a cyclic stationary behavior combined
with a certain tendency.
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Figure 1. Training phase with RF algorithm of the subset MOES-RF for GBV complaints data series.

The results of the forecasting task can be found in Table 5. With each predictive algorithm, and for
each subset of data, we calculate the accuracy of the next six months/steps of the GBV complaints series.
Using the CV technique, we can obtain the RMSE for each future step, then, as a measure of performance,
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obtain an average of the six values of RMSE regarding each FS technique (RMSE). The standard
deviation is also estimated in each forecasted series in order to infer the accuracy’s variability.

Table 5. RMSE to 6-step GBV complaints forecasting in Spain.

RMSE

Subset FS 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step RMSE
Standard
Deviation

Forecasting technique: LR

No F.S. 0.2309 0.4502 0.6627 0.8719 1.0802 1.2785 0.7624 0.3922
MOES-LR 0.2229 0.2784 0.2938 0.3059 0.3224 0.3418 0.2942 0.0413
MOES-RF 0.1273 0.1784 0.1985 0.2015 0.2069 0.2093 0.1870 0.0312
MOES-IBk 0.0914 0.1878 0.2853 0.3761 0.4576 0.5227 0.3202 0.1638

Rnk-LR 0.1033 0.2034 0.2932 0.3589 0.4012 0.4039 0.2940 0.1203
Rnk-RF 0.1198 0.2058 0.2632 0.3014 0.3292 0.3493 0.2615 0.0861
Rnk-Rlf 0.3860 0.4017 0.4195 0.4362 0.4442 0.4253 0.4188 0.0217

Rnk-PCA 0.2289 0.3227 0.3619 0.3859 0.4081 0.4315 0.3565 0.0729

RMSE 0.3618

Forecasting technique: RF

No F.S. 0.2083 0.2407 0.2513 0.2635 0.2748 0.2747 0.2522 0.0253
MOES-LR 0.1680 0.1808 0.1867 0.1943 0.2047 0.2117 0.1910 0.0160
MOES-RF 0.1489 0.1586 0.1646 0.1714 0.1806 0.1876 0.1686 0.0143
MOES-IBk 0.1803 0.1941 0.2012 0.2104 0.2214 0.2275 0.2058 0.0176

Rnk-LR 0.1824 0.1919 0.1978 0.2055 0.2166 0.2246 0.2031 0.0157
Rnk-RF 0.1605 0.1801 0.1866 0.1930 0.2034 0.2125 0.1894 0.0183
Rnk-Rlf 0.1919 0.2047 0.2121 0.2219 0.2333 0.2395 0.2172 0.0179

Rnk-PCA 0.1820 0.1960 0.2047 0.2144 0.2258 0.2343 0.2095 0.0193

RMSE 0.2046

Forecasting technique: SVM

No F.S. 0.3825 0.4632 0.4879 0.5067 0.5307 0.5600 0.4885 0.0618
MOES-LR 0.1706 0.2204 0.2372 0.2489 0.2621 0.2722 0.2352 0.0365
MOES-RF 0.0987 0.1580 0.1913 0.1999 0.2082 0.2118 0.1780 0.0434
MOES-IBk 0.1782 0.2765 0.3288 0.3603 0.3838 0.4056 0.3222 0.0837

Rnk-LR 0.0759 0.1420 0.1929 0.2198 0.2314 0.2292 0.1819 0.0618
Rnk-RF 0.1320 0.1648 0.1850 0.1922 0.1997 0.1997 0.1789 0.0264
Rnk-Rlf 0.1292 0.2462 0.3460 0.4273 0.4974 0.5583 0.3674 0.1605

Rnk-PCA 0.1321 0.2579 0.3762 0.4865 0.5869 0.6711 0.4185 0.2032

RMSE 0.2963

Forecasting technique: GP

No F.S. 0.3402 0.3823 0.3922 0.4005 0.4156 0.4383 0.3949 0.0332
MOES-LR 0.1540 0.2160 0.2325 0.2344 0.2403 0.2531 0.2217 0.0353
MOES-RF 0.1325 0.1648 0.1735 0.1813 0.1898 0.1913 0.1722 0.0219
MOES-IBk 0.1694 0.2171 0.2325 0.2443 0.2560 0.2611 0.2301 0.0337

Rnk-LR 0.1513 0.2118 0.2317 0.2373 0.2469 0.2603 0.2232 0.0388
Rnk-RF 0.1720 0.2125 0.2220 0.2276 0.2374 0.2512 0.2205 0.0272
Rnk-Rlf 0.3075 0.3525 0.3649 0.3758 0.3927 0.4161 0.3683 0.0371

Rnk-PCA 0.2479 0.2989 0.3120 0.3229 0.3396 0.3592 0.3134 0.0384

RMSE 0.2680

F.S.: Feature Selection; LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian
Process; MOES: Multi-Objective Evolutionary Search Strategy; Rnk: Ranker; IBk: Instance-Based K-nearest neighbor;
Rlf : Relief Attribute; PCA: Principal Component Analysis.

A Shapiro–Wilk test was used to determine whether the data presented a normal distribution for
each 6-steps prediction. The results indicated that the data was normally distributed (p-values > 0.05).
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To compare the similarity of the eight forecasted series per prediction technique, we performed the
parametric Welch’s T-test. The results indicated that the 6-steps evolution of the original dataset
differed significantly from the other results (p-value < α = 0.05) in the four cases (LR, RF, SVM, and GP).

As can be seen in Table 5, the lower RMSE averaged between steps (RMSE) is obtained using RF as
a foresight algorithm with the MOES-RF dataset (RMSE = 0.1686 u/10,000 pop). Other FS approaches
are also promising. Figure 2 shows different predictions using RF from all of the datasets. Rnk-RF also
provides an accurate result in most of the predictive situations, which can indicate that the use of
RF as a predictor in each attribute evaluator is an interesting choice. MOES-LR closely follows the
performance in this particular situation under analysis.
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But, as stated in the results, MOES-RF seems to be the better dataset for utilization.
According to Table 5, with all the four different predictive techniques, the best accuracy is achieved with
this subset. When using this FS combination, the best predictive algorithm is RF, as depicted in Figure 3,
where it can be seen that RF offers the best average accuracy because of the low standard deviation
in the RMSE in each step—which results in performance stability. SVM is able to achieve a better
performance in short prediction, as well as LR, but they soon increase errors in future steps—which can
be inferred by their bigger standard deviation.
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The better forecasting results with RF can be also inferred by averaging the averaged RMSE

(RMSE), expressed by RMSE, and then by making a comparison between prediction methods. RF then

offers an RMSE = 0.2046 u/10,000 pop, followed by GP with RMSE = 0.2680 u/10,000 pop. SVM results
in variable performance (as shown in Figure 3), averaging 0.2963 u/10,000 pop. LR cannot follow the
accuracy of the other algorithms even closely.

We need to bear in mind that, for a population of 47,329,981 inhabitants, the achieved RMSE for
RF is equal to a RMSE of 968.37 complaints for all the country (per month). Taking into account that
the average of complaints in 2019 per month in Spain was 14,014 petitions, the error is around 6% and
good enough for our purposes.

Taking into account these results, it is possible to make a practical check of the prediction evolution
in the months from October 2019 to March 2020 using MOES-RF with RF as a forecasting technique,
before comparing the results with the real evolution. As can be observed, the prediction is accurate
enough to identify trends, while logically being more separated from the real curve as we progressively
expand the predictive horizon (Figure 4).
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Figure 4. Prediction for the months October 2019 to March 2020 and real data comparison. Feature
selection: MOES-RF. Forecasting technique: RF.

Following the same procedure with the selected Spanish provinces of different populations
(Madrid, Alicante, and Segovia), we can confirm that similar results can be found. Table 6 summarizes
the RMSE of the 6-step predictions carried out with the four predictive techniques and with each of the
eight data subsets.
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Table 6. Average RMSE to 6-step GBV complaints forecasting in different territories.

Subset FS Spain Madrid Alicante Segovia

(RMSE 6-Steps)
Standard
Deviation (RMSE 6-Steps)

Standard
Deviation (RMSE 6-Steps)

Standard
Deviation (RMSE 6-Steps)

Standard
Deviation

Forecasting technique: LR

No F.S. 0.7624 0.3922 1.1144 0.5175 1.1849 0.2454 1.7304 0.5124
MOES-LR 0.2942 0.0413 0.3430 0.1167 0.4724 0.1636 0.5129 0.1208
MOES-RF 0.1870 0.0312 0.2709 0.0066 0.3974 0.0704 0.3104 0.1108
MOES-IBk 0.3202 0.1638 0.5108 0.2423 0.9960 0.3369 0.8974 0.1692

Rnk-LR 0.2940 0.1203 0.3519 0.1406 0.8525 0.0843 0.3370 0.0107
Rnk-RF 0.2615 0.0861 0.3153 0.0493 0.4081 0.0047 0.2756 0.1074
Rnk-Rlf 0.4188 0.0217 0.5127 0.1821 1.1618 0.3647 1.2120 0.1902

Rnk-PCA 0.3565 0.0729 0.6136 0.0748 1.0383 0.3725 1.1588 0.7191

RMSE 0.3618 0.5041 0.8139 0.8043

Forecasting technique: RF

No F.S. 0.2522 0.0253 0.3198 0.0208 0.4245 0.0384 0.7339 0.0178
MOES-LR 0.1910 0.0160 0.3047 0.0224 0.3922 0.0360 0.6163 0.0118
MOES-RF 0.1686 0.0143 0.2928 0.0258 0.3776 0.0297 0.5756 0.0127
MOES-IBk 0.2058 0.0176 0.3051 0.0245 0.3978 0.0350 0.6592 0.0144

Rnk-LR 0.2031 0.0157 0.2990 0.0171 0.3804 0.0418 0.6195 0.0160
Rnk-RF 0.1894 0.0183 0.2921 0.0151 0.3704 0.0303 0.5798 0.0154
Rnk-Rlf 0.2172 0.0179 0.3158 0.0155 0.4026 0.0348 0.7262 0.0288

Rnk-PCA 0.2095 0.0193 0.3113 0.0218 0.4047 0.0324 0.6665 0.0231

RMSE 0.2046 0.3051 0.3938 0.6471

Forecasting technique: SVM

No F.S. 0.4885 0.0618 0.8038 0.2394 1.4879 0.4664 1.7207 0.7698
MOES-LR 0.2352 0.0365 0.3276 0.1057 0.4940 0.0888 0.4714 0.0987
MOES-RF 0.1780 0.0434 0.2508 0.0329 0.3407 0.0620 0.3418 0.1222
MOES-IBk 0.3222 0.0837 0.4588 0.1980 0.5229 0.1560 0.5738 0.1021

Rnk-LR 0.1819 0.0618 0.4583 0.1478 0.4866 0.1523 0.5341 0.4749
Rnk-RF 0.1789 0.0264 0.2620 0.0866 0.2975 0.0681 0.4103 0.2492
Rnk-Rlf 0.3674 0.1605 0.5824 0.0747 0.8858 0.3994 1.0350 0.1614

Rnk-PCA 0.4185 0.2032 0.4866 0.1357 0.7613 0.0778 0.6652 0.3641

RMSE 0.2963 0.4538 0.6596 0.7190
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Table 6. Cont.

Subset FS Spain Madrid Alicante Segovia

(RMSE 6-Steps)
Standard
Deviation (RMSE 6-Steps)

Standard
Deviation (RMSE 6-Steps)

Standard
Deviation (RMSE 6-Steps)

Standard
Deviation

Forecasting technique: GP

No F.S. 0.3949 0.0332 0.4966 0.0806 0.6799 0.0794 0.5454 0.0686
MOES-LR 0.2217 0.0353 0.3650 0.0664 0.3271 0.0738 0.3644 0.0682
MOES-RF 0.1722 0.0219 0.3013 0.0318 0.2602 0.0377 0.3033 0.0376
MOES-IBk 0.2301 0.0337 0.3709 0.0353 0.5322 0.0766 0.3788 0.0513

Rnk-LR 0.2232 0.0388 0.3136 0.0378 0.3299 0.0442 0.3116 0.0321
Rnk-RF 0.2205 0.0272 0.2762 0.0541 0.3192 0.0493 0.2899 0.0384
Rnk-Rlf 0.3683 0.0371 0.4226 0.0426 0.6502 0.1130 0.4225 0.0826

Rnk-PCA 0.3134 0.0384 0.3945 0.0716 0.6471 0.0606 0.4656 0.0939

RMSE 0.2680 0.3676 0.4682 0.3852
Average among

techniquesRMSE
0.2826 0.4076 0.5839 0.6389

F.S.: Feature Selection; LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian Process; MOES: Multi-Objective Evolutionary Search Strategy; Rnk:
Ranker; IBk: Instance-Based K-nearest neighbor; Rlf : Relief Attribute; PCA: Principal Component Analysis.
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From the results shown in Table 6, valuable conclusions can be obtained. MOES-RF appears to be
the best FS technique, with RF being the best forecasting algorithm. This performance is consistent
and to be expected as the time-series data from each province makes up the subsets of the whole
country or, seen in a different light, the analyzed data from Spain makes up the sum of the provinces.

Nevertheless, we have to highlight that RMSE is higher for each predictive technique when the
province is less populated. This can be explained because, when we are considering the whole of Spain
or Madrid (millions of people), the consistency of some data is flush, and in some way occasional
and punctual situations are retailed averaged in a big population, showing a smoother evolution
of the social variables. On the other hand, with a low population, every single fluctuation stands
out more, resulting in more variability in the prediction and, hence, higher error and a bigger standard

deviation. This particular case can be easily appreciated by studying the table, showing that RMSE
corresponding to each technique is around three times bigger than the whole country when applied to
Segovia—0.2963 to 0.7190 u/10,000 pop (Spain and Segovia, respectively) when using SVM, or 0.2680

to 0.3852 u/10,000 pop (Spain—Segovia) when using GP. To deepen this idea, we average the RMSE of

each technique by territory one more time (referred to as RMSE in Table 6), allowing us to appreciate
this evolution clearly, growing from 0.2826, 0.4076, 0.5839, and 0.6389 u/10,000 pop (Spain, Madrid,
Alicante, and Segovia, respectively).

Although, for the sake of simplicity, predictions are not detailed in every step of the
provinces’ comparison. Figure 5 shows the instance evolution or RMSE in each territory forecasting
with MOES-RF (chosen as FS) and RF. As can be seen, all of the forecasting steps show the stability of
RF as a predictive algorithm, although higher values and a more oscillating prediction can be observed
in the case of Segovia.
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Figure 5. Evolution of RMSE in 6-step GBV complaints’ forecast, performed by FS dataset MOES-RF
and RF as predictive techniques for different territories.

Considering these results and the discussion, some important conclusions can be made in the
next section.

7. Conclusions and Future Works

GBV makes for one of the great unresolved problems of our time that require urgent attention.
Allocating resources of all kinds is essential for tackling these situations before they occur,
allowing authorities to anticipate and act before the aggressions take place.

It is necessary, therefore, to consider the extent to which we can predict the incidence of this violence
in order to optimize resources and allocate the necessary means in the most appropriate manner,
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both in time and space. Until now, achieving such a forecast has proven complex, but the periodic
collection of data that reflects the state and evolution of society, together with the increased knowledge
and applicability of ML algorithms, provides a new avenue for addressing the challenge of predicting
the temporal evolution of gender violence.

In this work, the possibility of predicting the reports of gender violence with acceptable
accuracy has been proven, with the most appropriate technique for selecting variables and the
best predictive algorithm performance having been discussed. After testing eight sets with four known
predictive techniques, it has been found that the most appropriate technique is one that combines
MOES-RF as a variable selection with RF to predict future values. This conclusion has been obtained
by using the data corresponding to the whole of Spain from January 2009 to September 2019, which has
been corroborated by comparing it with certain provinces of the country with differing populations,
such as Madrid, Alicante, and Segovia—each with a particular casuistry.

Given the difference in population of the provinces studied, as well as their different
geographical situation, an adequate prediction per province allows for a correct distribution of
the available state resources, so that awareness campaigns, police intervention, as well as economic
resources and other social policies are distributed over time in a more efficient manner. Although it
can be inferred from the study that there is seasonality in general, the maximum incidence from one
province to another may differ, which, thanks to the results of this work, will allow for more adjusted
planning in the provincial distribution of resources.

Other combinations of FS and predictive algorithms are also promising and may also be useful.
Although there is consistency between the behavior of ML techniques in each territory, it has
been shown that errors increase when the population decreases, as well as the error dispersion
(greater variation), giving an impression that, the larger the population, the greater consistency in the
data collected, which will reflect not a particular circumstance in time, but the presence of underlying
circumstances with predictable cause–effect relationships. A smaller study population will mean
isolated circumstances marking the oscillation of certain variables more significantly—a dynamic that
will be attenuated in larger populations.

In any case, this work intends, rather than showing concrete results in a specific period of time in
Spain and some of its provinces, to present a specific methodology and to study its viability. With the
conclusions drawn, we aim to serve as a basis for studies similar to ours in other countries/territories
with comparable (or other) variables to be taken into account. In this sense, some other public databases
could validate the proposed methodology. The European Institute for Gender Equality, in its Gender
Statistics Database (https://eige.europa.eu/gender-statistics/dgs), provide several data that can be used
for validation purposes.

For this reason, future work should look to test other combinations of attribute selection
and prediction, as well as replicating our method to address other social issues involving a large
number of people (migration, education, consumption, economy, etc.), and continuing to check the
performance of the work described here.
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