47,900 research outputs found
Does the proton-to-electron mass ratio vary in the course of cosmological evolution?
The possible cosmological variation of the proton-to-electron mass ratio was
estimated by measuring the H_2 wavelengths in the high-resolution spectrum of
the quasar Q~0347-382. Our analysis yielded an estimate for the possible
deviation of \mu value in the past, 10 Gyr ago: for the unweighted value
; for the weighted value Since the significance of the both
results does not exceed 3, further observations are needed to increase
the statistical significance. In any case, this result may be considered as the
most stringent estimate on an upper limit of a possible variation of \mu (95%
C.L.): This value serves as an
effective tool for selection of models determining a relation between possible
cosmological deviations of the fine-structure constant \alpha and the
elementary particle masses (m, m, etc.).Comment: 6 pages, 1 figure. Talk presented at the JENAM 2002 Workshop on
Varying Fundamental Constants, Porto, 4th September 2002. To be published in
the Conference Proceeding
Assessment of flywheel energy storage for spacecraft power systems
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction
Dual Formulation of the Lie Algebra S-expansion Procedure
The expansion of a Lie algebra entails finding a new, bigger algebra G,
through a series of well-defined steps, from an original Lie algebra g. One
incarnation of the method, the so-called S-expansion, involves the use of a
finite abelian semigroup S to accomplish this task. In this paper we put
forward a dual formulation of the S-expansion method which is based on the dual
picture of a Lie algebra given by the Maurer-Cartan forms. The dual version of
the method is useful in finding a generalization to the case of a gauge free
differential algebra, which in turn is relevant for physical applications in,
e.g., Supergravity. It also sheds new light on the puzzling relation between
two Chern-Simons Lagrangians for gravity in 2+1 dimensions, namely the
Einstein-Hilbert Lagrangian and the one for the so-called "exotic gravity".Comment: 12 pages, no figure
Canonical circuit quantization with linear nonreciprocal devices
Nonreciprocal devices effectively mimic the breaking of time-reversal
symmetry for the subspace of dynamical variables that they couple, and can be
used to create chiral information processing networks. We study the systematic
inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian
descriptions of lumped-element electrical networks. The proposed theory is of
wide applicability in general nonreciprocal networks on the quantum regime. We
apply it to pedagogical and pathological examples of circuits containing
Josephson junctions and ideal nonreciprocal elements described by admittance
matrices, and compare it with the more involved treatment of circuits based on
nonreciprocal devices characterized by impedance or scattering matrices.
Finally, we discuss the dual quantization of circuits containing phase-slip
junctions and nonreciprocal devices.Comment: 12 pages, 4 figures; changes made to match the accepted version in
PR
Fermion Analogy for Layered Superconducting Films in Parallel Magnetic Field
The equivalence between the Lawrence-Doniach model for films of extreme
type-II layered superconductors and a generalization of the back-scattering
model for spin-1/2 electrons in one dimension is demonstrated. This fermion
analogy is then exploited to obtain an anomalous tail for
the parallel equilibrium magnetization of the minimal double layer case in the
limit of high parallel magnetic fields for temperatures in the
critical regime.Comment: 11 pages of plain TeX, 1 postscript figur
Muon diffusion and electronic magnetism in YTiO
We report a SR study in a YTiO single crystal. We observe
slow local field fluctuations at low temperature which become faster as the
temperature is increased. Our analysis suggests that muon diffusion is present
in this system and becomes small below 40 K and therefore incoherent. A
surprisingly strong electronic magnetic signal is observed with features
typical for muons thermally diffusing towards magnetic traps below K and released from them above this temperature. We attribute the traps to
Ti defects in the diluted limit. Our observations are highly relevant to
the persistent spin dynamics debate on TiO pyrochlores and their
crystal quality
Theory of Decoupling in the Mixed Phase of Extremely Type-II Layered Superconductors
The mixed phase of extremely type-II layered superconductors in perpendicular
magnetic field is studied theoretically via the layered XY model with uniform
frustration. A partial duality analysis is carried out in the weak-coupling
limit. It consistently accounts for both intra-layer (pancake) and inter-layer
(Josephson) vortex excitations. The main conclusion reached is that
dislocations of the two-dimensional (2D) vortex lattices within layers drive a
unique second-order melting transition at high perpendicular fields between a
low-temperature superconducting phase that displays a Josephson effect and a
high-temperature ``normal'' phase that displays no Josephson effect. The former
state is best described by weakly coupled 2D vortex lattices, while the latter
state is best characterized by a decoupled vortex liquid. It is further argued
on the basis of the duality analysis that the second-order melting transition
converts itself into a first-order one as the perpendicular field is lowered
and approaches the dimensional cross-over scale. The resulting critical
endpoint potentially accounts for the same phenomenon that is observed in the
mixed phase of clean high-temperature superconductors.Comment: 39 pgs. of PLAIN TeX, 2 postscript figs., published versio
Nesting Induced Peierls-type Instability for Compressed Li-CI16
Alkalies are considered to be simple metals at ambient conditions. However,
recently reported theoretical and experimental results have shown an unexpected
and intriguing correlation between complex structures and an enhanced
superconducting transition temperature in lithium under pressure. In this
article we analyze the pressure induced Fermi surface deformation in bcc
lithium, and its relation to the observed cI16 structure. According to our
calculations, the Fermi surface becomes increasingly anisotropic with pressure
and develops an extended nesting along the bcc [121] direction. This nesting
induces a phonon instability of both transverse modes at N, so that a
Peierls-type mechanism is proposed to explain the stability of Li-cI16.Comment: Proceedings of Fukuoka 2006 Conference on Novel Pressure-induced
Phenomena in Condensed Matter Systems. To be published in J. Phys. Soc. Jpn.
2 pages and 3 figure
Berezinskii-Kosterlitz-Thouless Transition in Spin-Charge Separated Superconductor
A model for spin-charge separated superconductivity in two dimensions is
introduced where the phases of the spinon and holon order parameters couple
gauge-invariantly to a statistical gauge-field representing chiral
spin-fluctuations. The model is analyzed in the continuum limit and in the
low-temperature limit. In both cases we find that physical electronic phase
correlations show a superconducting-normal phase transition of the
Berezinskii-Kosterlitz-Thouless type, while statistical gauge-field excitations
are found to be strictly gapless. The normal-to-superconductor phase boundary
for this model is also obtained as a function of carrier density, where we find
that its shape compares favorably with that of the experimentally observed
phase diagram for the oxide superconductors.Comment: 35 pages, TeX, CSLA-P-93-
- …