2,100 research outputs found

    TEMPORAL AND SPATIAL DISTRIBUTION OF POACEAE POLLEN IN AREAS OF SOUTHERN UNITED KINGDOM, SPAIN AND PORTUGAL

    Get PDF
    Overall, longer Poaceae pollen seasons coincided with earlier pollen season start dates. Winter rainfall noticeably affects the intensity of Poaceae pollen seasons in Mediterranean areas, but this was not as important in Worcester. Weekly data from Worcester followed a similar pattern to that of Badajoz and Évora but at a distance of more than 1500 km and 4-5 weeks later

    Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise

    Get PDF
    As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle

    Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise

    Get PDF
    As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n 9) or without (BR; n 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator- 1 (PGC-1 ), and myostatin, were analyzed in samples from m.vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1 and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle

    High performance silicon photonic devices based on practical metamaterials

    Get PDF
    Robert Halir, et al., "High performance silicon photonic devices based on practical metamaterials," OECC/PSC, 7-12 July 2019, Fukuoka (Japan)Subwavelength grating metamaterials are enabling a new generation of high-performance silicon photonic devices. Here we discuss the fundamental physics along with some of the latest advances in this rapidly expanding field.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Ministerio de Economía y Competitividad, Programa Estatal de Investigación Orientada a los Retos de la Sociedad (cofinanciado FEDER) – TEC2016-80718-R, TEC2015-71127-C2-1-R (FPI BES-2016-077798) and IJCI-2016-30484; Community of Madrid – S2018/NMT-4326, Marie Sklodowska-Curie –734331, Czech Science Foundation – 1900062

    CEACAM7 polymorphisms predict genetic predisposition to mortality in post-surgical septic shock patients

    Get PDF
    We carried out a retrospective exploratory study on 173 patients who underwent major surgery and developed septic shock after surgery. Our findings suggest that CEACAM7 rs1001578, rs10409040, and rs889365 polymorphisms could influence septic shock-related death in individuals who underwent major surgery.This work has been supported by grants given by Instituto de Salud Carlos III (grant number PI15/01451 to ET), “Gerencia de Salud, Consejería de Sanidad, Junta de Castilla y Leon” [grant number GRS 463/A/10 and 773/A/13 to ET], and PFIZER [grant number CT25-ESP01-01 to SR]. MAJS and AFR are supported by “Instituto de Salud Carlos III” [grant numbers CP17CIII/00007 and CP14CIII/00010, respectively]S

    A personalized intervention to prevent depression in primary care: cost-effectiveness study nested into a clustered randomized trial

    Get PDF
    Background: Depression is viewed as a major and increasing public health issue, as it causes high distress in the people experiencing it and considerable financial costs to society. Efforts are being made to reduce this burden by preventing depression. A critical component of this strategy is the ability to assess the individual level and profile of risk for the development of major depression. This paper presents the cost-effectiveness of a personalized intervention based on the risk of developing depression carried out in primary care, compared with usual care. Methods: Cost-effectiveness analyses are nested within a multicentre, clustered, randomized controlled trial of a personalized intervention to prevent depression. The study was carried out in 70 primary care centres from seven cities in Spain. Two general practitioners (GPs) were randomly sampled from those prepared to participate in each centre (i.e. 140 GPs), and 3326 participants consented and were eligible to participate. The intervention included the GP communicating to the patient his/her individual risk for depression and personal risk factors and the construction by both GPs and patients of a psychosocial programme tailored to prevent depression. In addition, GPs carried out measures to activate and empower the patients, who also received a leaflet about preventing depression. GPs were trained in a 10- to 15-h workshop. Costs were measured from a societal and National Health care perspective. Qualityadjustedlife years were assessed using the EuroQOL five dimensions questionnaire. The time horizon was 18 months. Results: With a willingness-to-pay threshold of (sic)10, 000 ((sic)8568) the probability of cost-effectiveness oscillated from 83% (societal perspective) to 89% (health perspective). If the threshold was increased to (sic)30, 000 ((sic)25, 704), the probability of being considered cost-effective was 94% (societal perspective) and 96%, respectively (health perspective). The sensitivity analysis confirmed these results. Conclusions: Compared with usual care, an intervention based on personal predictors of risk of depression implemented by GPs is a cost-effective strategy to prevent depression. This type of personalized intervention in primary care should be further developed and evaluated

    Kinesin-1-mediated axonal transport of CB1 receptors is required for cannabinoid-dependent axonal growth and guidance

    Get PDF
    Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1^-/-^) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1^-/-^ mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1^-/-^ cerebral cortex. In addition, Klc1^-/-^ neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.Fil: Saez, Trinidad María de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Fernandez Bessone, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Rodriguez, María S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Alloatti, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Otero, María G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Cromberg, Lucas Eneas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Oubiña, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Sosa, Lucas Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Gelman, Diego Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Falzone, Tomas Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin
    corecore