6 research outputs found

    Servicios innovadores con el uso de las TIC

    Get PDF
    FunciĂłn de un sistema de almacenamiento; Almacenamiento manual vs automatizad

    Herramientas de videostreaming y su aplicaciĂłn a un curso bimodal en procesamiento de plĂĄsticos

    Get PDF
    En este trabajo se realiza una sĂ­ntesis del proyecto de grado: “Herramientas de audio, video y animaciĂłn para un curso interactivo en Procesamiento de PlĂĄsticos” para el pregrado en IngenierĂ­a de ProducciĂłn de la Universidad EAFIT en MedellĂ­n, Colombia; con el cual se busca la realizaciĂłn y puesta en funcionamiento de un curso interactivo de procesamiento de plĂĄsticos utilizando el Microsoft Producer como herramienta tecnolĂłgica que permite combinar en una misma aplicaciĂłn audio, video y animaciĂłn, asĂ­ como la aplicaciĂłn de nuevas herramientas y ayudas educativas como los Mapas Mentales y los Hexagramas con el objetivo de mejorar el proceso de enseñanza y aprendizaje y que permitan que el estudiante tenga mĂĄs y mejores posibilidades de llegar y de expandir su conocimientos a travĂ©s de la utilizaciĂłn  de las herramientas que ofrece este curso.In this paper a synthesis of the thesis “audio, video and animations tools for an interactive course in plastic procedure” is carried out, for the mayor in production engineering of EAFIT University in Medellin Colombia. Whereby, the realization and functioning of the interactive curse in plastic procedure is pursuited. It is using Microsoft producers in the same applications, as well as the applications of new tools and educational aids such as mental maps and hexagrams used with the purpose of improving the process of teaching and learning. This process also permits students to have more and better possibilities to achieve and expand their knowledge through the usage of tools that this course offers

    Mezclas de cera y bentonita para el desarrollo de arcilla industrial de prototipado: resultados preliminares

    Get PDF
    The automotive design process and the materials in the automotive industry in recent years has caused great interest to the industrial and academic sector. In this study was to evaluate the effect of the amount of bentonite on the thermal and rheological properties of the compound bentonite / paraffin wax. Two bentonite ratios were used: paraffin wax (40:60 and 30:70). The paraffin was characterized by Fourier transform infrared spectroscopy (FTIR), the bentonite was characterized by means of x-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence (XRF). The bentonite/paraffine wax composite was characterized by differential-scanning calorimetry (DSC) and rheology. The sample that contains a higher amount of bentonite shows a lower latent heat, and this could cause a greater heat transfer. Finally, the sample that has a lower amount of bentonite evidenced a lower viscosity, and it could be related to a lower interaction between the particles. The sample S1 due to its lower latent heat compared to S2 could represent an interesting alternative to develop prototypingclays. since these materials are characterized by their low working temperatures and easy malleability. Keywords: automotive, prototyping, latent heat, bentonite, paraffin. References [1]X. FerrĂ s-HernĂĄndez, E. Tarrats-Pons, and N. Arimany-Serrat, “Disruption in the automotive industry: A Cambrian moment,” Bus. Horiz., vol. 60, no. 6, pp.855–863, 2017, doi: 10.1016/j.bushor.2017.07.011. [2]O. Heneric, G. Licht, S. Lutz, and W. Urban, “The Europerean Automotive Industry in a Global Context,” Eur. Automot. Ind. Move, pp. 5–44, 2005, doi: 10.1007/3-7908-1644-2_2. [3]S. I.-N. Delhi, “Automotive Revolution & Perspective Towards 2030,” Auto Tech Rev., vol. 5, no. 4, pp. 20–25, Apr. 2016, doi: 10.1365/s40112-016-1117-8.[4]M. Tovey, J. Owen, and P. Street, “in Automotive Design,” vol. 21, pp. 569–588, 2000. [5]Yasusato Yamada, Clay modeling : techniques for giving three-dimensional form to idea. 1997. [6]H. Murray, “Industrial clays case study,” Mining, Miner. Sustain. Dev., vol. 1, no. 64, pp. 1–9, 2002, [Online]. Available: http://www.whitemudresources.com/public/Hayn Murray Clays Case Study.pdf%0Ahttp://whitemudresources.com/public/Hayn Murray ClaysCase Study.pdf. [7]Transparency Market Research, “Industrial Clay Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016 - 2024,” New york, 2016.[8]J. Murphy, Additives for Plastics Handbook. Elsevier, 2001. [9]Y. Hong, J. J. Cooper-White, M. E. Mackay, C. J. Hawker, E. Malmström, and N. Rehnberg, “A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, pp. 781–793, 1999, doi: 10.1122/1.550999. [10]D. P. Rawski, P. Edwards, and U. States, “Pulp and Paper : Non fi brous Components,” no. January, pp.1–4, 2017, doi: 10.1016/B978-0-12-803581-8.10289-9. [11]J. Speight, “Instability and incompatibility of tight oil and shale oil,” Shale Oil Gas Prod. Process., pp. 915–942, 2020, doi: 10.1016/b978-0-12-813315-6.00017-8. [12]T. P. Brown, L. Rushton, M. A. Mugglestone, and D. F. Meechan, “Health effects of a sulphur dioxide air pollution episode,” vol. 25, no. 4, pp. 369–371, 2003,doi: 10.1093/pubmed/fdg083. [13]R. Chihi, I. Blidi, M. Trabelsi-Ayadi, and F. Ayari, “Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay,” Comptes Rendus Chim., vol. 22, no. 2–3, pp. 188–197, 2019, doi: 10.1016/j.crci.2018.12.002. [14]Z. Yi, W. Xiaopeng, and L. I. Dongxu, “Prepartion of organophilic bentonite / paraffin composite phase change energy storage material with melting intercalation method,” pp. 126–131, 2011, doi: 10.4028/www.scientific.net/AMR.284-286.126. [15]I. Krupa and A. S. Luyt, “Thermal and mechanical properties of extruded LLDPE / wax blends,” vol. 73, pp. 157–161, 2001. [16]A. Saleem, L. Frormann, J. Koltermann, and C. Reichelt, “Fabrication and Processing of Polypropylene - Paraffin Compounds with Enhanced Thermal andProcessing Properties : Impact Penetration and Thermal Characterization,” vol. 40164, pp. 1–9, 2014, doi:10.1002/app.40164. [17]M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, and T. Mcnally, “Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes,”Appl. Energy, vol. 162, pp. 68–82, 2016, doi: 10.1016/j.apenergy.2015.10.030. [18]M. Tovey, “Intuitive and objective processes in automotive design,” Des. Stud., vol. 13, no. 1, pp. 23–41, 1992, doi: 10.1016/0142-694X(92)80003-H. [19]J. Verlinden, A. Kooijman, E. Edelenbos, and C. Go, “Investigation on the use of illuminated clay in automotive styling,” 6th Int. Conf. Comput. Ind. Des.Concept. Des. (CAID&CD), Delft, NETHERLANDS, pp. 514–519, 2005. [20]N. W. Muhamad Bustaman and M. S. Abu Mansor, “A Study on CAD/CAM Application in CNC Milling Using Industrial Clay,” Appl. Mech. Mater., vol. 761, pp. 32–36, 2015, doi: 10.4028/www.scientific.net/AMM.761.32. [21]K. Shimokawa, Japan and the global automotive industry. 2010. [22]A. Bucio, R. Moreno tovar, L. Bucio, J. EspinosadĂĄvila, and F. Anguebes franceschi, “Characterization of beeswax, candelilla wax and paraffin wax for coatingcheeses,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030261. [23]F. Valentini, A. Dorigato, A. Pegoretti, M. Tomasi, G. D. SorarĂč, and M. Biesuz, “Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture,” J. Mater. Sci., vol. 56, no. 2, pp. 1537–1550, 2021, doi: 10.1007/s10853-020-05247-5. [24]F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x. [25]R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, and A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membranewith grafted bentonite clay,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22837-1. [26]S. Betancourt-Parra, M. A. DomĂ­nguez-Ortiz, and M. MartĂ­nez-Tejada, “Colombian clays binary mixtures: Physical changes due to thermal treatments,” DYNA, vol. 87, no. 212, pp. 73–79, 2020, doi: 10.15446/dyna.v87n212.82285. [27]A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic crackingprocess of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110. [28]A. Kadeche et al., “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions,” Res. Chem. Intermed., vol. 46, no. 11, pp. 4985–5008, 2020, doi: 10.1007/s11164-020-04236-2. [29]C. I. R. De Oliveira, M. C. G. Rocha, A. L. N. DaSilva, and L. C. Bertolino, “Characterization of bentonite clays from Cubati, ParaĂ­ba Northeast of Brazil,” Ceramica, vol. 62, no. 363, pp. 272–277, 2016, doi:10.1590/0366-69132016623631970. [30]I. Z. Hager, Y. S. Rammah, H. A. Othman, E. M. Ibrahim, S. F. Hassan, and F. H. Sallam, “Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation,” J. Theor. Appl. Phys., vol. 13, no. 2, pp. 141–153, 2019, doi: 10.1007/ s40094-019-0332-5. [31]A. Tebeje, Z. Worku, T. T. I. Nkambule, and J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021, doi: 10.1007/s13762-021-03230-4. [32]F. E. ÖzgĂŒven, A. D. Pekdemir, M. Önal, and Y. Sarıkaya, “Characterization of a bentonite and its permanent aqueous suspension,” J. Turkish Chem. Soc.Sect. A Chem., vol. 7, no. 1, pp. 11–18, 2019, doi: 10.18596/jotcsa.535937. [33]S. Tao, S. Wei, and Y. Yulan, “Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage,” J. Mater. Civ. Eng., vol. 27, no. 4, p. 04014156, 2015, doi: 10.1061/(asce)mt.1943-5533.0001089. [34]M. Li, Z. Wu, H. Kao, and J. Tan, “Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material,” Energy Convers. Manag., vol. 52, no. 11, pp. 3275–3281, 2011, doi: 10.1016/j.enconman.2011.05.015. [35]S. M. Hosseini, E. Ghasemi, A. Fazlali, and D. E. Henneke, “The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids,” J. Nanoparticle Res., vol. 14, no. 7, 2012, doi: 10.1007/s11051-012-0858-9.El proceso de diseño automotriz y los materiales en la industria automotriz pen los Ășltimos años ha despertado un gran interĂ©s en el sector industrial y acadĂ©mico. En este estudio se evaluĂł el efecto de la cantidad de bentonita sobre las propiedades tĂ©rmicas y reolĂłgicas del compuesto bentonita/ cera de parafina. Se utilizaron dos proporciones de bentonita: cera de parafina (40:60 y 30:70). La parafina se caracterizĂł por espectroscopia infrarroja por transformada de Fourier (FTIR), la bentonita se caracterizĂł mediante difracciĂłn de rayos X (XRD), anĂĄlisis termogravimĂ©trico (TGA), fluorescencia de rayos X (XRF). El compuesto de cera de bentonita / parafina se caracterizĂł por calorimetrĂ­a de barrido diferencial (DSC) y reologĂ­a. La muestra que contiene una mayor cantidad de bentonita presenta un menor calor latente, y esto podrĂ­a provocar una mayor transferencia de calor. Finalmente, la muestra que tiene menor cantidad de bentonita evidenciĂł una menor viscosidad, y podrĂ­a estar relacionado con una menor interacciĂłn entre las partĂ­culas. La muestra S1 debido a su menor calor latente en comparaciĂłn con S2 podrĂ­a representar una alternativa interesante para desarrollar arcillas de prototipado. Ya que estos materiales S3 caracterizan por sus bajas temperaturas de trabajo y fĂĄcil maleabilidad. Palabras clave: automĂłvil, prototipado, reologĂ­a, bentonita, parafina. Referencias [1]X. FerrĂ s-HernĂĄndez, E. Tarrats-Pons, y N. Arimany-Serrat, “Disruption in the automotive industry: A Cambrian moment,” Bus. Horiz., vol. 60, no. 6, pp.855–863, 2017, doi: 10.1016/j.bushor.2017.07.011. [2]O. Heneric, G. Licht, S. Lutz, y W. Urban, “The Europerean Automotive Industry in a Global Context,” Eur. Automot. Ind. Move, pp. 5–44, 2005, doi: 10.1007/3-7908-1644-2_2. [3]S. I.-N. Delhi, “Automotive Revolution & Perspective Towards 2030,” Auto Tech Rev., vol. 5, no. 4, pp. 20–25, Apr. 2016, doi: 10.1365/s40112-016-1117-8. [4]M. Tovey, J. Owen, y P. Street, “in Automotive Design,” vol. 21, pp. 569–588, 2000. [5]Yasusato Yamada, Clay modeling : techniques for giving three-dimensional form to idea. 1997. [6]H. Murray, “Industrial clays case study,” Mining, Miner. Sustain. Dev., vol. 1, no. 64, pp. 1–9, 2002, [En lĂ­nea]. Disponible en: http://www.whitemudresources.com/public/Hayn Murray Clays Case Study.pdf%0Ahttp://whitemudresources.com/public/Hayn Murray ClaysCase Study.pdf. [7]Transparency Market Research, “Industrial Clay Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016 - 2024,” New york, 2016.[8]J. Murphy, Additives for Plastics Handbook. Elsevier, 2001. [9]Y. Hong, J. J. Cooper-White, M. E. Mackay, C. J. Hawker, E. Malmström, y N. Rehnberg, “A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, pp. 781–793, 1999, doi: 10.1122/1.550999. [10]D. P. Rawski, P. Edwards, y U. States, “Pulp and Paper : Non fi brous Components,” no. January, pp.1–4, 2017, doi: 10.1016/B978-0-12-803581-8.10289-9. [11]J. Speight, “Instability and incompatibility of tight oil and shale oil,” Shale Oil Gas Prod. Process., pp. 915–942, 2020, doi: 10.1016/b978-0-12-813315-6.00017-8. [12]T. P. Brown, L. Rushton, M. A. Mugglestone, y D. F. Meechan, “Health effects of a sulphur dioxide air pollution episode,” vol. 25, no. 4, pp. 369–371, 2003,doi: 10.1093/pubmed/fdg083. [13]R. Chihi, I. Blidi, M. Trabelsi-Ayadi, y F. Ayari, “Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay,” Comptes Rendus Chim., vol. 22, no. 2–3, pp. 188–197, 2019, doi: 10.1016/j.crci.2018.12.002. [14]Z. Yi, W. Xiaopeng, y L. I. Dongxu, “Prepartion of organophilic bentonite / paraffin composite phase change energy storage material with melting intercalation method,” pp. 126–131, 2011, doi: 10.4028/www.scientific.net/AMR.284-286.126. [15]I. Krupa y A. S. Luyt, “Thermal and mechanical properties of extruded LLDPE / wax blends,” vol. 73, pp. 157–161, 2001. [16]A. Saleem, L. Frormann, J. Koltermann, y C. Reichelt, “Fabrication and Processing of Polypropylene - Paraffin Compounds with Enhanced Thermal andProcessing Properties : Impact Penetration and Thermal Characterization,” vol. 40164, pp. 1–9, 2014, doi:10.1002/app.40164. [17]M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, y T. Mcnally, “Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes,”Appl. Energy, vol. 162, pp. 68–82, 2016, doi: 10.1016/j.apenergy.2015.10.030. [18]M. Tovey, “Intuitive and objective processes in automotive design,” Des. Stud., vol. 13, no. 1, pp. 23–41, 1992, doi: 10.1016/0142-694X(92)80003-H. [19]J. Verlinden, A. Kooijman, E. Edelenbos, y C. Go, “Investigation on the use of illuminated clay in automotive styling,” 6th Int. Conf. Comput. Ind. Des.Concept. Des. (CAID&CD), Delft, NETHERLANDS, pp. 514–519, 2005. [20]N. W. Muhamad Bustaman y M. S. Abu Mansor, “A Study on CAD/CAM Application in CNC Milling Using Industrial Clay,” Appl. Mech. Mater., vol. 761, pp. 32–36, 2015, doi: 10.4028/www.scientific.net/AMM.761.32. [21]K. Shimokawa, Japan and the global automotive industry. 2010. [22]A. Bucio, R. Moreno tovar, L. Bucio, J. EspinosadĂĄvila, y F. Anguebes franceschi, “Characterization of beeswax, candelilla wax and paraffin wax for coatingcheeses,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030261. [23]F. Valentini, A. Dorigato, A. Pegoretti, M. Tomasi, G. D. SorarĂč, y M. Biesuz, “Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture,” J. Mater. Sci., vol. 56, no. 2, pp. 1537–1550, 2021, doi: 10.1007/s10853-020-05247-5. [24]F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, y C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x. [25]R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, y A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membranewith grafted bentonite clay,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22837-1. [26]S. Betancourt-Parra, M. A. DomĂ­nguez-Ortiz, y M. MartĂ­nez-Tejada, “Colombian clays binary mixtures: Physical changes due to thermal treatments,” DYNA, vol. 87, no. 212, pp. 73–79, 2020, doi: 10.15446/dyna.v87n212.82285. [27]A. M. Rabie, E. A. Mohammed, y N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic crackingprocess of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110. [28]A. Kadeche et al., “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions,” Res. Chem. Intermed., vol. 46, no. 11, pp. 4985–5008, 2020, doi: 10.1007/s11164-020-04236-2. [29]C. I. R. De Oliveira, M. C. G. Rocha, A. L. N. DaSilva, y L. C. Bertolino, “Characterization of bentonite clays from Cubati, ParaĂ­ba Northeast of Brazil,” Ceramica, vol. 62, no. 363, pp. 272–277, 2016, doi:10.1590/0366-69132016623631970. [30]I. Z. Hager, Y. S. Rammah, H. A. Othman, E. M. Ibrahim, S. F. Hassan, y F. H. Sallam, “Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation,” J. Theor. Appl. Phys., vol. 13, no. 2, pp. 141–153, 2019, doi: 10.1007/ s40094-019-0332-5. [31]A. Tebeje, Z. Worku, T. T. I. Nkambule, y J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021, doi: 10.1007/s13762-021-03230-4. [32]F. E. ÖzgĂŒven, A. D. Pekdemir, M. Önal, e Y. Sarıkaya, “Characterization of a bentonite and its permanent aqueous suspension,” J. Turkish Chem. Soc.Sect. A Chem., vol. 7, no. 1, pp. 11–18, 2019, doi: 10.18596/jotcsa.535937. [33]S. Tao, S. Wei, e Y. Yulan, “Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage,” J. Mater. Civ. Eng., vol. 27, no. 4, p. 04014156, 2015, doi: 10.1061/(asce)mt.1943-5533.0001089. [34]M. Li, Z. Wu, H. Kao, y J. Tan, “Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material,” Energy Convers. Manag., vol. 52, no. 11, pp. 3275–3281, 2011, doi: 10.1016/j.enconman.2011.05.015. [35]S. M. Hosseini, E. Ghasemi, A. Fazlali, y D. E. Henneke, “The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids,” J. Nanoparticle Res., vol. 14, no. 7, 2012, doi: 10.1007/s11051-012-0858-9

    Colombian consensus recommendations for diagnosis, management and treatment of the infection by SARS-COV-2/ COVID-19 in health care facilities - Recommendations from expertÂŽs group based and informed on evidence

    Get PDF
    La AsociaciĂłn Colombiana de InfectologĂ­a (ACIN) y el Instituto de EvaluaciĂłn de Nuevas TecnologĂ­as de la Salud (IETS) conformĂł un grupo de trabajo para desarrollar recomendaciones informadas y basadas en evidencia, por consenso de expertos para la atenciĂłn, diagnĂłstico y manejo de casos de Covid 19. Estas guĂ­as son dirigidas al personal de salud y buscar dar recomendaciones en los ĂĄmbitos de la atenciĂłn en salud de los casos de Covid-19, en el contexto nacional de Colombia

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    No full text
    International audienceA primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)  MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ) for charged-current Îœe absorption on argon. In the context of a simulated extraction of supernova Îœe spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ) modeling uncertainties on DUNE’s supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ) must be substantially reduced before the Îœe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(EÎœ) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ). A direct measurement of low-energy Îœe-argon scattering would be invaluable for improving the theoretical precision to the needed level

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents
    corecore