17,989 research outputs found
Artificial Life in Quantum Technologies
We develop a quantum information protocol that models the biological
behaviors of individuals living in a natural selection scenario. The
artificially engineered evolution of the quantum living units shows the
fundamental features of life in a common environment, such as self-replication,
mutation, interaction of individuals, and death. We propose how to mimic these
bio-inspired features in a quantum-mechanical formalism, which allows for an
experimental implementation achievable with current quantum platforms. This
result paves the way for the realization of artificial life and embodied
evolution with quantum technologies
Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions
Magnetic lateral multilayers have been fabricated on weak perpendicular
magnetic anisotropy amorphous Nd-Co films in order to perform a systematic
study on the conditions for controlled nucleation of topological defects within
their magnetic stripe domain pattern. A lateral thickness modulation of period
is defined on the nanostructured samples that, in turn, induces a lateral
modulation of both magnetic stripe domain periods and average
in-plane magnetization component . Depending on lateral multilayer
period and in-plane applied field, thin and thick regions switch independently
during in-plane magnetization reversal and domain walls are created within the
in-plane magnetization configuration coupled to variable angle grain boundaries
and disclinations within the magnetic stripe domain patterns. This process is
mainly driven by the competition between rotatable anisotropy (that couples the
magnetic stripe pattern to in-plane magnetization) and in-plane shape
anisotropy induced by the periodic thickness modulation. However, as the
structural period becomes comparable to magnetic stripe period ,
the nucleation of topological defects at the interfaces between thin and thick
regions is hindered by a size effect and stripe domains in the different
thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review
Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier
The elastic and alpha-production channels for the 6He+208Pb reaction are
investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22,
and 27 MeV). The effect of the two-neutron transfer channels on the elastic
scattering has been studied within the Coupled-Reaction-Channels (CRC) method.
We find that the explicit inclusion of these channels allows a simultaneous
description of the elastic data and the inclusive alpha cross sections at
backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC)
calculations are found to reproduce the elastic data, but not the
transfer/breakup data. The trivially-equivalent local polarization potential
(TELP) derived from the CRC and CDCC calculations are found to explain the
features found in previous phenomenological optical model calculations for this
system.Comment: 7 pages, 6 figures (replaced with updated version
Algorithmic quantum simulation of memory effects
We propose a method for the algorithmic quantum simulation of memory effects
described by integrodifferential evolution equations. It consists in the
systematic use of perturbation theory techniques and a Markovian quantum
simulator. Our method aims to efficiently simulate both completely positive and
nonpositive dynamics without the requirement of engineering non-Markovian
environments. Finally, we find that small error bounds can be reached with
polynomially scaling resources, evaluated as the time required for the
simulation
Quantum Artificial Life in an IBM Quantum Computer
We present the first experimental realization of a quantum artificial life
algorithm in a quantum computer. The quantum biomimetic protocol encodes
tailored quantum behaviors belonging to living systems, namely,
self-replication, mutation, interaction between individuals, and death, into
the cloud quantum computer IBM ibmqx4. In this experiment, entanglement spreads
throughout generations of individuals, where genuine quantum information
features are inherited through genealogical networks. As a pioneering
proof-of-principle, experimental data fits the ideal model with accuracy.
Thereafter, these and other models of quantum artificial life, for which no
classical device may predict its quantum supremacy evolution, can be further
explored in novel generations of quantum computers. Quantum biomimetics,
quantum machine learning, and quantum artificial intelligence will move forward
hand in hand through more elaborate levels of quantum complexity
Quantum autoencoders via quantum adders with genetic algorithms
The quantum autoencoder is a recent paradigm in the field of quantum machine
learning, which may enable an enhanced use of resources in quantum
technologies. To this end, quantum neural networks with less nodes in the inner
than in the outer layers were considered. Here, we propose a useful connection
between approximate quantum adders and quantum autoencoders. Specifically, this
link allows us to employ optimized approximate quantum adders, obtained with
genetic algorithms, for the implementation of quantum autoencoders for a
variety of initial states. Furthermore, we can also directly optimize the
quantum autoencoders via genetic algorithms. Our approach opens a different
path for the design of quantum autoencoders in controllable quantum platforms
Dielectric branes in non-trivial backgrounds
We present a procedure to evaluate the action for dielectric branes in
non-trivial backgrounds. These backgrounds must be capable to be taken into a
Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this
wrapping factor is gauged away. Examples of this are AdS_5xS^5 and
AdS_3xS^3xT^4, where we perform the construction of different stable systems,
which stability relies in its dielectric character.Comment: 14 pages, published versio
- …
