1,732 research outputs found
Cellular Models for River Networks
A cellular model introduced for the evolution of the fluvial landscape is
revisited using extensive numerical and scaling analyses. The basic network
shapes and their recurrence especially in the aggregation structure are then
addressed. The roles of boundary and initial conditions are carefully analyzed
as well as the key effect of quenched disorder embedded in random pinning of
the landscape surface. It is found that the above features strongly affect the
scaling behavior of key morphological quantities. In particular, we conclude
that randomly pinned regions (whose structural disorder bears much physical
meaning mimicking uneven landscape-forming rainfall events, geological
diversity or heterogeneity in surficial properties like vegetation, soil cover
or type) play a key role for the robust emergence of aggregation patterns
bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure
Defective Vortex Lattices in Layered Superconductors with Point Pins at the Extreme Type-II Limit
The mixed phase of layered superconductors with no magnetic screening is
studied through a partial duality analysis of the corresponding frustrated XY
model in the presence of weak random point pins. Isolated layers exhibit a
defective vortex lattice at low temperature that is phase coherent.
Sufficiently weak Josephson coupling between adjacent layers results in an
entangled vortex solid that exhibits weak superconductivity across layers. The
corresponding vortex liquid state shows an inverted specific heat anomaly that
we propose accounts for that seen in YBCO. A three-dimensional vortex lattice
with dislocations occurs at stronger coupling. This crossover sheds light on
the apparent discrepancy concerning the observation of a vortex-glass phase in
recent Monte Carlo simulations of the same XY model.Comment: 4 pages, 1 figure. To appear in PRB, rapid communicatio
Circular RNAs as novel regulators of β-cell functions in normal and disease conditions.
There is strong evidence for an involvement of different classes of non-coding RNAs, including microRNAs and long non-coding RNAs, in the regulation of β-cell activities and in diabetes development. Circular RNAs were recently discovered to constitute a substantial fraction of the mammalian transcriptome but the contribution of these non-coding RNAs in physiological and disease processes remains largely unknown. The goal of this study was to identify the circular RNAs expressed in pancreatic islets and to elucidate their possible role in the control of β-cells functions.
We used a microarray approach to identify circular RNAs expressed in human islets and searched their orthologues in RNA sequencing data from mouse islets. We then measured the level of four selected circular RNAs in the islets of different Type 1 and Type 2 diabetes models and analyzed the role of these circular transcripts in the regulation of insulin secretion, β-cell proliferation, and apoptosis.
We identified thousands of circular RNAs expressed in human pancreatic islets, 497 of which were conserved in mouse islets. The level of two of these circular transcripts, circHIPK3 and ciRS-7/CDR1as, was found to be reduced in the islets of diabetic db/db mice. Mimicking this decrease in the islets of wild type animals resulted in impaired insulin secretion, reduced β-cell proliferation, and survival. ciRS-7/CDR1as has been previously proposed to function by blocking miR-7. Transcriptomic analysis revealed that circHIPK3 acts by sequestering a group of microRNAs, including miR-124-3p and miR-338-3p, and by regulating the expression of key β-cell genes, such as Slc2a2, Akt1, and Mtpn.
Our findings point to circular RNAs as novel regulators of β-cell activities and suggest an involvement of this novel class of non-coding RNAs in β-cell dysfunction under diabetic conditions
Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises
Dynamics of an ensemble of -unit FitzHugh-Nagumo (FN) neurons subject to
white noises has been studied by using a semi-analytical dynamical mean-field
(DMF) theory in which the original -dimensional {\it stochastic}
differential equations are replaced by 8-dimensional {\it deterministic}
differential equations expressed in terms of moments of local and global
variables. Our DMF theory, which assumes weak noises and the Gaussian
distribution of state variables, goes beyond weak couplings among constituent
neurons. By using the expression for the firing probability due to an applied
single spike, we have discussed effects of noises, synaptic couplings and the
size of the ensemble on the spike timing precision, which is shown to be
improved by increasing the size of the neuron ensemble, even when there are no
couplings among neurons. When the coupling is introduced, neurons in ensembles
respond to an input spike with a partial synchronization. DMF theory is
extended to a large cluster which can be divided into multiple sub-clusters
according to their functions. A model calculation has shown that when the noise
intensity is moderate, the spike propagation with a fairly precise timing is
possible among noisy sub-clusters with feed-forward couplings, as in the
synfire chain. Results calculated by our DMF theory are nicely compared to
those obtained by direct simulations. A comparison of DMF theory with the
conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice
Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60
Muon spin rotation measurements of the magnetic field distribution in the
vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60}
reveal a vortex-lattice melting transition at much lower temperature than that
in the fully oxygenated material. The transition is best described by a model
in which adjacent layers of ``pancake'' vortices decouple in the liquid phase.
Evidence is also found for a pinning-induced crossover from a solid 3D to
quasi-2D vortex lattice, similar to that observed in the highly anisotropic
superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file
Analysis of microscopic magnitudes of radiative blast waves launched in xenon clusters with collisional-radiative steady-state simulations
Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shocks such as radiative blast waves propagate. In this work, by means of collisional-radiative steady-state calculations, a characterization and an analysis of microscopic magnitudes of laboratory blast waves launched in xenon clusters are made. Thus, for example, the average ionization, the charge state distribution, the cooling time or photon mean free paths are studied. Furthermore, for a particular experiment, the effects of the self-absorption and self-emission in the specific intensity emitted by the shock front and that is going through the radiative precursor are investigated. Finally, for that experiment, since the electron temperature is not measured experimentally, an estimation of this magnitude is made both for the shock shell and the radiative precursor
Determination and analysis of plasma radiative properties for numerical simulations of laboratory radiative blast waves launched in xenon clusters
Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon plasmas are commonly used for the medium in which the radiative shocks propagate. The knowledge of the plasma radiative properties is crucial for the correct understanding and for the hydrodynamic simulations of radiative shocks. In this work, we perform an analysis of the radiative properties of xenon plasmas in a range of matter densities and electron temperatures typically found in laboratory experiments of radiative shocks launched in xenon plasmas. Furthermore, for a particular experiment, our analysis is applied to make a diagnostics of the electron temperatures of the radiative shocks since they could not be experimentally measure
Mean first passage times of processes driven by white shot noise
The systems driven by white shot noise are analyzed based on mean first passage times. The shot noise has exponentially distributed jump heights. The the linkage between the results and the steady state probability density function of the process are presented
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Three-body structure of low-lying 18Ne states
We investigate to what extent 18Ne can be descibed as a three-body system
made of an inert 16O-core and two protons. We compare to experimental data and
occasionally to shell model results. We obtain three-body wave functions with
the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne,
the structure of the different states and the predominant transition strengths.
Two 0+, two 2+, and one 4+ bound states are found where they are all known
experimentally. Also one 3+ close to threshold is found and several negative
parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O
excited 3- state. The structures are extracted as partial wave components, as
spatial sizes of matter and charge, and as probability distributions.
Electromagnetic decay rates are calculated for these states. The dominating
decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA
- …
