25,029 research outputs found

    Bifurcations from families of periodic solutions in piecewise differential systems

    Full text link
    Consider a differential system of the form x′=F0(t,x)+∑i=1kεiFi(t,x)+εk+1R(t,x,ε), x'=F_0(t,x)+\sum_{i=1}^k \varepsilon^i F_i(t,x)+\varepsilon^{k+1} R(t,x,\varepsilon), where Fi:S1×D→RmF_i:\mathbb{S}^1 \times D \to \mathbb{R}^m and R:S1×D×(−ε0,ε0)→RmR:\mathbb{S}^1 \times D \times (-\varepsilon_0,\varepsilon_0) \to \mathbb{R}^m are piecewise Ck+1C^{k+1} functions and TT-periodic in the variable tt. Assuming that the unperturbed system x′=F0(t,x)x'=F_0(t,x) has a dd-dimensional submanifold of periodic solutions with d<md<m, we use the Lyapunov-Schmidt reduction and the averaging theory to study the existence of isolated TT-periodic solutions of the above differential system

    Sustainable management of miombo woodlands in the Northern part of Mozambique (Niassa National Reserve - NNR).

    Get PDF
    Poster presented at Commiting Science to Global Development. Lisbon (Portugal). 29-30 Sep 2009

    A QCD sum rules calculation of the J/ψDs∗DsJ/\psi D_s^* D_s strong coupling constant

    Full text link
    In this work, we calculate the form factors and the coupling constant of the strange-charmed vertex J/ψDs∗DsJ/\psi D_s^* D_s in the framework of the QCD sum rules by studying their three-point correlation functions. All the possible off-shell cases are considered, DsD_s, Ds∗D_s^* and J/ψJ/\psi, resulting in three different form factors. These form factors are extrapolated to the pole of their respective off-shell mesons, giving the same coupling constant for the process. Our final result for the J/ψDs∗DsJ/\psi D_s^* D_s coupling constant is gJ/ψDs∗Ds=4.30−0.37+0.42GeV−1g_{J/\psi D^*_s D_s} = 4.30^{+0.42}_{-0.37}\text{GeV}^{-1}.Comment: 17 pages, 4 figure
    • …
    corecore