research

Bifurcations from families of periodic solutions in piecewise differential systems

Abstract

Consider a differential system of the form x=F0(t,x)+i=1kεiFi(t,x)+εk+1R(t,x,ε), x'=F_0(t,x)+\sum_{i=1}^k \varepsilon^i F_i(t,x)+\varepsilon^{k+1} R(t,x,\varepsilon), where Fi:S1×DRmF_i:\mathbb{S}^1 \times D \to \mathbb{R}^m and R:S1×D×(ε0,ε0)RmR:\mathbb{S}^1 \times D \times (-\varepsilon_0,\varepsilon_0) \to \mathbb{R}^m are piecewise Ck+1C^{k+1} functions and TT-periodic in the variable tt. Assuming that the unperturbed system x=F0(t,x)x'=F_0(t,x) has a dd-dimensional submanifold of periodic solutions with d<md<m, we use the Lyapunov-Schmidt reduction and the averaging theory to study the existence of isolated TT-periodic solutions of the above differential system

    Similar works