25 research outputs found

    A Chemical Analog of Curcumin as an Improved Inhibitor of Amyloid Abeta Oligomerization

    Get PDF
    Amyloid-like plaques are characteristic lesions defining the neuropathology of Alzheimer's disease (AD). The size and density of these plaques are closely associated with cognitive decline. To combat this disease, the few therapies that are available rely on drugs that increase neurotransmission; however, this approach has had limited success as it has simply slowed an imminent decline and failed to target the root cause of AD. Amyloid-like deposits result from aggregation of the Aβ peptide, and thus, reducing amyloid burden by preventing Aβ aggregation represents an attractive approach to improve the therapeutic arsenal for AD. Recent studies have shown that the natural product curcumin is capable of crossing the blood-brain barrier in the CNS in sufficient quantities so as to reduce amyloid plaque burden. Based upon this bioactivity, we hypothesized that curcumin presents molecular features that make it an excellent lead compound for the development of more effective inhibitors of Aβ aggregation. To explore this hypothesis, we screened a library of curcumin analogs and identified structural features that contribute to the anti-oligomerization activity of curcumin and its analogs. First, at least one enone group in the spacer between aryl rings is necessary for measureable anti-Aβ aggregation activity. Second, an unsaturated carbon spacer between aryl rings is essential for inhibitory activity, as none of the saturated carbon spacers showed any margin of improvement over that of native curcumin. Third, methoxyl and hydroxyl substitutions in the meta- and para-positions on the aryl rings appear necessary for some measure of improved inhibitory activity. The best lead inhibitors have either their meta- and para-substituted methoxyl and hydroxyl groups reversed from that of curcumin or methoxyl or hydroxyl groups placed in both positions. The simple substitution of the para-hydroxy group on curcumin with a methoxy substitution improved inhibitor function by 6-7-fold over that measured for curcumin

    Mycolactone Gene Expression Is Controlled by Strong SigA-Like Promoters with Utility in Studies of Mycobacterium ulcerans and Buruli Ulcer

    Get PDF
    Mycolactone A/B is a lipophilic macrocyclic polyketide that is the primary virulence factor produced by Mycobacterium ulcerans, a human pathogen and the causative agent of Buruli ulcer. In M. ulcerans strain Agy99 the mycolactone polyketide synthase (PKS) locus spans a 120 kb region of a 174 kb megaplasmid. Here we have identified promoter regions of this PKS locus using GFP reporter assays, in silico analysis, primer extension, and site-directed mutagenesis. Transcription of the large PKS genes mlsA1 (51 kb), mlsA2 (7 kb) and mlsB (42 kb) is driven by a novel and powerful SigA-like promoter sequence situated 533 bp upstream of both the mlsA1 and mlsB initiation codons, which is also functional in Escherichia coli, Mycobacterium smegmatis and Mycobacterium marinum. Promoter regions were also identified upstream of the putative mycolactone accessory genes mup045 and mup053. We transformed M. ulcerans with a GFP-reporter plasmid under the control of the mls promoter to produce a highly green-fluorescent bacterium. The strain remained virulent, producing both GFP and mycolactone and causing ulcerative disease in mice. Mosquitoes have been proposed as a potential vector of M. ulcerans so we utilized M. ulcerans-GFP in microcosm feeding experiments with captured mosquito larvae. M. ulcerans-GFP accumulated within the mouth and midgut of the insect over four instars, whereas the closely related, non-mycolactone-producing species M. marinum harbouring the same GFP reporter system did not. This is the first report to identify M. ulcerans toxin gene promoters, and we have used our findings to develop M. ulcerans-GFP, a strain in which fluorescence and toxin gene expression are linked, thus providing a tool for studying Buruli ulcer pathogenesis and potential transmission to humans

    Retro-trochanteric sciatica-like pain: current concept

    Get PDF
    The aim of this manuscript is to review the current knowledge in terms of retro-trochanteric pain syndrome, make recommendations for diagnosis and differential diagnosis and offer suggestions for treatment options. The terminology in the literature is confusing and these symptoms can be referred to as ‘greater trochanteric pain syndrome’, ‘trochanteric bursitis’ and ‘trochanteritis’, among other denominations. The authors focus on a special type of sciatica, i.e. retro-trochanteric pain radiating down to the lower extremity. The impact of different radiographic assessments is discussed. The authors recommend excluding pathology in the spine and pelvic area before following their suggested treatment algorithm for sciatica-like retro-trochanteric pain. Level of evidence II

    The conundrum of iron in multiple sclerosis – time for an individualised approach

    Full text link

    Magnetic Anisotropy in Lithium-Zinc Ferrites

    No full text
    corecore