330 research outputs found

    Package wsbackfit for Smooth Backfitting Estimation of Generalized Structured Models

    Get PDF
    A package is introduced that provides the weighted smooth backfitting estimator for a large family of popular semiparametric regression models. This family is known as generalized structured models, comprising, for example, generalized varying coefficient model, generalized additive models, mixtures, potentially including parametric parts. The kernel-based weighted smooth backfitting belongs to the statistically most efficient procedures for this model class. Its asymptotic properties are well-understood thanks to the large body of literature about this estimator. The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation under heteroscedasticity. Further options facilitate easy handling of aggregated data, prediction, and the presentation of estimation results. Cross-validation methods are provided which can be used for model and bandwidth selection.

    The importance of back contact modification in Cu2ZnSnSe4 solar cells: The role of a thin MoO2 layer

    Full text link
    Cu2ZnSn(SxSe1-x)4 (CZTSSe) photovoltaic absorbers could be the earth-abundant and low toxicity replacement for the already commercialized CuIn1-xGaxSe2 (CIGS) thin film technology. In order to make this possible, specific research efforts applied to the bulk, front and back interfaces must be performed with the aim of improving CZTSSe performance. In this paper the importance of back contact modification to obtain high efficiency Cu2ZnSnSe4 (CZTSe) solar cells and to increase a paramount and limiting parameter such as VOC is highlighted. Several Mo configurations (monolayer, bi-layer and tri-layer) with different electrical and morphological properties are investigated in CZTSe solar cells. An optimum tri-layer configuration in order to minimize overselenization of the back contact during thermal annealing while keeping reasonable electrical features is defined. Additionally, a thin intermediate MoO2 layer that results in a very effective barrier against selenization and innovative way to efficiently assist in the CZTSe absorber sintering is introduced. The use of this layer enhances grain growth and subsequently the efficiency of solar cells increases via major VOC and FF improvement. An efficiency increase from 7.2% to 9.5% is obtained using a Mo tri-layer with a 20 nm intermediate MoO2 layerThis research was supported by the Framework 7 program under the project KESTCELLS (FP7-PEOPLE-2012-ITN-316488), by MINECO (Ministerio de Economía y Competitividad de España) under the SUNBEAM project (ENE2013-49136-C4-1-R), and by European Regional Development Founds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013). Authors from IREC and the University of Barcelona belong to the M-2E (Electronic Materials for Energy) Consolidated Research Group and the XaRMAE Network of Excellence on Materials for Energy of the “Generalitat de Catalunya”. M.E-R. thanks the MINECO for the FPI-MINECO (BES-2011-045774), Y.S. for the PTA fellowship (PTA2012-7852-A), SG for the FPI fellowship (BES-2014-068533), M.P. for the MINECO postdoctoral fellow (FPDI-2013-18968), E.S. and R.C. for the “Ramon y Cajal” fellowship (RYC-2011-09212) and (RYC-2011-08521) respectively, and H.X. thanks the “China Scholarship Council” fellowship (CSC Nº 201206340113

    Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites

    Get PDF
    The efficiency of kesterite-based solar cells is limited by various non-ideal recombination paths, amongst others by a high density of defect states and by the presence of binary or ternary secondary phases within the absorber layer. Pronounced compositional variations and secondary phase segregation are indeed typical features of non-stoichiometric kesterite materials. Certainly kesterite-based thin film solar cells with an off-stoichiometric absorber layer composition, especially Cu-poor/Zn-rich, achieved the highest efficiencies, but deviations from the stoichiometric composition lead to the formation of intrinsic point defects (vacancies, anti-sites, and interstitials) in the kesterite-type material. In addition, a non-stoichiometric composition is usually associated with the formation of an undesirable side phase (secondary phases). Thus the correlation between off-stoichiometry and intrinsic point defects as well as the identification and quantification of secondary phases and compositional fluctuations in non-stoichiometric kesterite materials is of great importance for the understanding and rational design of solar cell devices. This paper summarizes the latest achievements in the investigation of identification and quantification of intrinsic point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterite-type materials

    Determination of the high-pressure crystal structure of BaWO4 and PbWO4

    Full text link
    We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in BaWO4 and PbWO4 at pressures of up to 56 GPa and 24 GPa, respectively. BaWO4 is found to undergo a pressure-driven phase transition at 7.1 GPa from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in PbWO4 at 9 GPa. We observe a second transition to another monoclinic structure which we identify as that of the isostructural phases BaWO4-II and PbWO4-III (space group P21/n). We have also performed ab initio total energy calculations which support the stability of this structure at high pressures in both compounds. The theoretical calculations further find that upon increase of pressure the scheelite phases become locally unstable and transform displacively into the fergusonite structure. The fergusonite structure is however metastable and can only occur if the transition to the P21/n phases were kinetically inhibited. Our experiments in BaWO4 indicate that it becomes amorphous beyond 47 GPa.Comment: 46 pages, 11 figures, 3 table

    High-pressure x-ray diffraction and ab initio study of Ni2Mo3N, Pd2Mo3N, Pt2Mo3N, Co3Mo3N, and Fe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides

    Full text link
    We have studied by means of high-pressure x-ray diffraction the structural stability of Ni2Mo3N, Co3Mo3N, and Fe3Mo3N. We also report ab initio computing modeling of the high-pressure properties of these compounds, Pd2Mo3N, and Pt2Mo3N. We have found that the nitrides remain stable in the ambient-pressure cubic structure at least up to 50 GPa and determined their equation of state. All of them have a bulk modulus larger than 300 GPa. Single-crystal elastic constants have been calculated in order to quantify the stiffness of the investigated nitrides. We found that they should have a Vickers hardness similar to that of cubic spinel nitrides like gamma-Si3N4Comment: 25 pages, 6 figures, 3 table

    La medicina rural: una visión mirando al futuro

    Get PDF
    The management of any large building stock with limited resources poses a problem of prioritization of refurbishment actions. Also, available technical information about the building stock is often incomplete and the process of standardization and updating is expensive and time consuming. Some public owners are developing preliminary BIM models of their stock, but they are willing to limit the complexity of the models within the lowest amount of information required for management and maintenance, so as to make that process affordable. Indeed, administrations are challenged by their duty relative to planning regular maintenance and operation of buildings, because of the legislation in force, which requires monitoring of their facilities. For the reasons stated above, this paper presents a decision support tool that can help prioritize refurbishment actions on large building assets. To this purpose, many requirements must be jointly considered in this examination, each requirement being assessed by means of one or several indicators. Then the indicators are compared one another, according to a multi-criteria approach, that weighs the several criteria and rank the assets. In order to deal with the extensive and uncertain information that must be managed in this process, indicators are estimated by means of Bayesian Networks. This tool is used first to assess the technical indicators and rank the assets, while marking any facilities not complying with regulations. Then, additional Bayesian Networks are in charge of estimating the budget needed to upgrade non-compliant facilities with minimum legislation requirements. The outcomes of this research can be used even to assess the level of detail of the information that must be included in BIM models of the stock, in fact acting as guidelines for their development. Finally, the application of the decision tool on a real test case will be presented

    Oral chondroitin sulfate and prebiotics for the treatment of canine Inflammatory Bowel Disease: a randomized, controlled clinical trial

    Get PDF
    BACKGROUND Canine inflammatory bowel disease (IBD) is a chronic enteropathy of unknown etiology, although microbiome dysbiosis, genetic susceptibility, and dietary and/or environmental factors are hypothesized to be involved in its pathogenesis. Since some of the current therapies are associated with severe side effects, novel therapeutic modalities are needed. A new oral supplement for long-term management of canine IBD containing chondroitin sulfate (CS) and prebiotics (resistant starch, β-glucans and mannaoligosaccharides) was developed to target intestinal inflammation and oxidative stress, and restore normobiosis, without exhibiting any side effects. This double-blinded, randomized, placebo-controlled trial in dogs with IBD aims to evaluate the effects of 180 days administration of this supplement together with a hydrolyzed diet on clinical signs, intestinal histology, gut microbiota, and serum biomarkers of inflammation and oxidative stress. RESULTS Twenty-seven client-owned biopsy-confirmed IBD dogs were included in the study, switched to the same hydrolyzed diet and classified into one of two groups: supplement and placebo. Initially, there were no significant differences between groups (p > 0.05) for any of the studied parameters. Final data analysis (supplement: n = 9; placebo: n = 10) showed a significant decrease in canine IBD activity index (CIBDAI) score in both groups after treatment (p < 0.001). After treatment, a significant decrease (1.53-fold; p < 0.01) in histologic score was seen only in the supplement group. When groups were compared, the supplement group showed significantly higher serum cholesterol (p < 0.05) and paraoxonase-1 (PON1) levels after 60 days of treatment (p < 0.01), and the placebo group showed significantly reduced serum total antioxidant capacity (TAC) levels after 120 days (p < 0.05). No significant differences were found between groups at any time point for CIBDAI, WSAVA histologic score and fecal microbiota evaluated by PCR-restriction fragment length polymorphism (PCR-RFLP). No side effects were reported in any group. CONCLUSIONS The combined administration of the supplement with hydrolyzed diet over 180 days was safe and induced improvements in selected serum biomarkers, possibly suggesting a reduction in disease activity. This study was likely underpowered, therefore larger studies are warranted in order to demonstrate a supplemental effect to dietary treatment of this supplement on intestinal histology and CIBDAI

    Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions

    Full text link
    Multi-phonon Raman scattering in semiconductor nanocrystals is treated taking into account both adiabatic and non-adiabatic phonon-assisted optical transitions. Because phonons of various symmetries are involved in scattering processes, there is a considerable enhancement of intensities of multi-phonon peaks in nanocrystal Raman spectra. Cases of strong and weak band mixing are considered in detail. In the first case, fundamental scattering takes place via internal electron-hole states and is participated by s- and d-phonons, while in the second case, when the intensity of the one-phonon Raman peak is strongly influenced by the interaction of an electron and of a hole with interface imperfections (e. g., with trapped charge), p-phonons are most active. Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a good quantitative agreement with recent experimental results.Comment: 16 pages, 2 figures, E-mail addresses: [email protected], [email protected], [email protected], accepted for publication in Physical Review

    Effects of Milled Maize Stalks on the Productive Response of Grazing Dairy Cows.

    Get PDF
    The productive response of grazing dairy cows was evaluated, using milled corn stalks in the diet. The study was developed in two different settings, in Ecuador (Costa and Sierra regions). On the coast farm (29.1 ha), cows grazed on Bermuda grass (Cynodon nlemfuensis) and Guinea grass (Panicum maximum) with several types of legumes (Lysicarpus, Centrosema, Desmodium, Galactia), supplemented with corn stalks cv. INIAP 125. The animals received 0.46 kg beginning at 3 kg, and milled maize stalks in 30 and 28-day periods, respectively (M-30 and M-28), and control without stalks for 36 days (M-0). The farm in the other region (14.2 ha) had 23 cows grazing on Kikuyo grass (P. clandestinum) and ryegrass-white clover (L. perenne and whole maize stalks and T. (60-70% ripe grain), at a rate of 18 kg green/cow/day for 48 days; and balanced supplement, at a rate of 0.5 kg/ milk liter, after the fourth kilogram, along with minerals. In both cases the forage had effects (P &lt; 0.05) on cow response. In the Sierra area, the increase was 1.68 kg/cow, and in the coast, it was 1.1 and 2.5 kg/cow). Maize stalks served as a nutritional complement for poorly consumed grass areas in both regions; milk production/animal was increased, and the costs were reduced

    Pressure-induced amorphization of YVO4:Eu3+ nanoboxes

    Full text link
    This is an author-created, un-copyedited version of an article published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0957-4484/27/2/025701A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two D-5(0)-> F-7(0) photoluminescence peaks confirms the existence of two local environments for Eu3+, at least for the low-pressure phase. One environment is the expected for substituting Y3+ and the other is likely a disordered environment possibly found at the surface of the nanoboxes.This work has been performed under financial support from Spanish MINECO under the National Program of Materials (MAT2013-46649-C4-1/2/3/4-P) and the Consolider-Ingenio 2010 Program (MALTA CSD2007-00045). Funding by the Fundacion Caja Canarias (ENER-01) and the EU-FEDER funds is also acknowledged. JR-F thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship and NS thanks the German Research Foundation (DFG) for financial support (Project RA2585/1-1). We acknowledge Diamond Light Source for time on beamline I15 under proposals EE3652 and EE6517. Parts of this research were carried out at the light source PETRA III at DESY (Hamburg), a member of the Helmholtz Association (HFG). We would like to thank H-P Liermann and W Morgenroth for assistance in using beamline P02.2.Ruiz Fuertes, J.; Gomis, O.; León Luis, SF.; Schrodt, N.; Manjón Herrera, FJ.; Ray, S.; Santamaría Pérez, D.... (2016). Pressure-induced amorphization of YVO4:Eu3+ nanoboxes. Nanotechnology. 27(2):025701-1-025701-8. https://doi.org/10.1088/0957-4484/27/2/025701S025701-1025701-8272Piot, L., Le Floch, S., Cornier, T., Daniele, S., & Machon, D. (2013). Amorphization in Nanoparticles. The Journal of Physical Chemistry C, 117(21), 11133-11140. doi:10.1021/jp401121cZhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Yuan, H., Wang, K., Li, S., Tan, X., Li, Q., Yan, T., … Zou., B. (2012). Direct Zircon-to-Scheelite Structural Transformation in YPO4 and YPO4:Eu3+ Nanoparticles Under High Pressure. The Journal of Physical Chemistry C, 116(46), 24837-24844. doi:10.1021/jp3088995Mishra, A. K., Garg, N., Pandey, K. K., Shanavas, K. V., Tyagi, A. K., & Sharma, S. M. (2010). Zircon-monoclinic-scheelite transformation in nanocrystalline chromates. Physical Review B, 81(10). doi:10.1103/physrevb.81.104109Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Mukherjee, S., Kim, K., & Nair, S. (2007). Short, Highly Ordered, Single-Walled Mixed-Oxide Nanotubes Assemble from Amorphous Nanoparticles. Journal of the American Chemical Society, 129(21), 6820-6826. doi:10.1021/ja070124cŞopu, D., Albe, K., Ritter, Y., & Gleiter, H. (2009). From nanoglasses to bulk massive glasses. Applied Physics Letters, 94(19), 191911. doi:10.1063/1.3130209Ozawa, L., & Itoh, M. (2003). Cathode Ray Tube Phosphors. Chemical Reviews, 103(10), 3835-3856. doi:10.1021/cr0203490Zhu, Y., Xu, W., Zhang, H., Wang, W., Tong, L., Xu, S., … Song, H. (2012). Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application. Applied Physics Letters, 100(8), 081104. doi:10.1063/1.3688167Khan, A. F., Haranath, D., Yadav, R., Singh, S., Chawla, S., & Dutta, V. (2008). Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layers. Applied Physics Letters, 93(7), 073103. doi:10.1063/1.2973163Cho, Y.-S., & Huh, Y.-D. (2011). Preparation of Transparent Red-Emitting YVO4:Eu Nanophosphor Suspensions. Bulletin of the Korean Chemical Society, 32(1), 335-337. doi:10.5012/bkcs.2011.32.1.335Jayaraman, A., Kourouklis, G. A., Espinosa, G. P., Cooper, A. S., & Van Uitert, L. G. (1987). A high-pressure Raman study of yttrium vanadate (YVO4) and the pressure-induced transition from the zircon-type to the scheelite-type structure. Journal of Physics and Chemistry of Solids, 48(8), 755-759. doi:10.1016/0022-3697(87)90072-2Wang, X., Loa, I., Syassen, K., Hanfland, M., & Ferrand, B. (2004). Structural properties of the zircon- and scheelite-type phases ofYVO4at high pressure. Physical Review B, 70(6). doi:10.1103/physrevb.70.064109Manjón, F. J., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H., Errandonea, D., & Syassen, K. (2010). Lattice dynamics ofYVO4at high pressures. Physical Review B, 81(7). doi:10.1103/physrevb.81.075202Boehler, R. (2006). New diamond cell for single-crystal x-ray diffraction. Review of Scientific Instruments, 77(11), 115103. doi:10.1063/1.2372734Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Qiu, X., Thompson, J. W., & Billinge, S. J. L. (2004). PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. Journal of Applied Crystallography, 37(4), 678-678. doi:10.1107/s0021889804011744Chupas, P. J., Qiu, X., Hanson, J. C., Lee, P. L., Grey, C. P., & Billinge, S. J. L. (2003). Rapid-acquisition pair distribution function (RA-PDF) analysis. Journal of Applied Crystallography, 36(6), 1342-1347. doi:10.1107/s0021889803017564Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., … Billinge, S. J. L. (2007). PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. Journal of Physics: Condensed Matter, 19(33), 335219. doi:10.1088/0953-8984/19/33/335219Trenque, I., Mornet, S., Duguet, E., & Gaudon, M. (2013). New Insights into Crystallite Size and Cell Parameters Correlation for ZnO Nanoparticles Obtained from Polyol-Mediated Synthesis. Inorganic Chemistry, 52(21), 12811-12817. doi:10.1021/ic402152fLangford, J. I., & Wilson, A. J. C. (1978). Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal of Applied Crystallography, 11(2), 102-113. doi:10.1107/s0021889878012844Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Jeong, I.-K., Proffen, T., Mohiuddin-Jacobs, F., & Billinge, S. J. L. (1999). Measuring Correlated Atomic Motion Using X-ray Diffraction. The Journal of Physical Chemistry A, 103(7), 921-924. doi:10.1021/jp9836978Frogley, M. D., Sly, J. L., & Dunstan, D. J. (1998). Pressure dependence of the direct band gap in tetrahedral semiconductors. Physical Review B, 58(19), 12579-12582. doi:10.1103/physrevb.58.12579Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Popescu, C., Sans, J. A., Errandonea, D., Segura, A., Villanueva, R., & Sapiña, F. (2014). Compressibility and Structural Stability of Nanocrystalline TiO2 Anatase Synthesized from Freeze-Dried Precursors. Inorganic Chemistry, 53(21), 11598-11603. doi:10.1021/ic501571uChen, G., Stump, N. A., Haire, R. G., Peterson, J. R., & Abraham, M. M. (1992). Pressure-induced phase transition in YVO4:Eu3+: A luminescence study at high pressure. Journal of Physics and Chemistry of Solids, 53(10), 1253-1257. doi:10.1016/0022-3697(92)90241-5Rivera-López, F., Martín, I. R., Da Silva, I., González-Silgo, C., Rodríguez-Mendoza, U. R., Lavín, V., … Fernández-Urban, J. (2006). Analysis of the Eu3+emission in a SrWO4laser matrix under pressure. High Pressure Research, 26(4), 355-359. doi:10.1080/08957950601105085Dieke, G. H., & Crosswhite, H. M. (1963). The Spectra of the Doubly and Triply Ionized Rare Earths. Applied Optics, 2(7), 675. doi:10.1364/ao.2.000675Lavı́n, V., Babu, P., Jayasankar, C. K., Martı́n, I. R., & Rodrı́guez, V. D. (2001). On the local structure of Eu3+ ions in oxyfluoride glasses. Comparison with fluoride and oxide glasses. The Journal of Chemical Physics, 115(23), 10935-10944. doi:10.1063/1.1420731Peacock, R. D. (s. f.). The intensities of lanthanide f ↔ f transitions. Rare Earths, 83-122. doi:10.1007/bfb0116556Oomen, E. W. J. L., & van Dongen, A. M. A. (1989). Europium (III) in oxide glasses. Journal of Non-Crystalline Solids, 111(2-3), 205-213. doi:10.1016/0022-3093(89)90282-2Song, H., Chen, B., Peng, H., & Zhang, J. (2002). Light-induced change of charge transfer band in nanocrystalline Y2O3:Eu3+. Applied Physics Letters, 81(10), 1776-1778. doi:10.1063/1.1501441Ray, S., León-Luis, S. F., Manjón, F. J., Mollar, M. A., Gomis, Ó., Rodríguez-Mendoza, U. R., … Lavín, V. (2014). Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method. Current Applied Physics, 14(1), 72-81. doi:10.1016/j.cap.2013.07.02
    corecore