27,916 research outputs found

    Armed Conflict Exposure, Human Capital Investments and Child Labor: Evidence from Colombia

    Get PDF
    Using a unique combination of household and violence data sets and a duration analysis methodology, this paper estimates the effect that exposure to armed conflict has on school drop-out decisions of Colombian children between the ages of six and seventeen. After taking into account the possible endogeneity of municipal conflict related events through the use of instrumental variables, we find that armed conflict reduces the average years of schooling in 8.78% for all Colombian children. This estimate increases to 17.03% for children between sixteen and seventeen years old. We provide evidence that such effect may be induced mainly through higher mortality risks, and to lesser extent due to negative economic shocks and lower school quality; all of which induce a trade-off between schooling and child labor.Armed con.ict, School drop-out, Duration Analysis, Colombia

    Combined grazing incidence RBS and TEM analysis of luminescent nano-SiGe/SiO2 multilayers.

    Get PDF
    Multilayer structures with five periods of amorphous SiGe nanoparticles/SiO2 layers with different thickness were deposited by Low Pressure Chemical Vapor Deposition and annealed to crystallize the SiGe nanoparticles. The use of grazing incidence RBS was necessary to obtain sufficient depth resolution to separate the signals arising from the individual layers only a few nm thick. The average size and areal density of the embedded SiGe nanoparticles as well as the oxide interlayer thickness were determined from the RBS spectra. Details of eventual composition changes and diffusion processes caused by the annealing processes were also studied. Transmission Electron Microscopy was used to obtain complementary information on the structural parameters of the samples in order to check the information yielded by RBS. The study revealed that annealing at 900 °C for 60 s, enough to crystallize the SiGe nanoparticles, leaves the structure unaltered if the interlayer thickness is around 15 nm or higher

    Probing equilibrium glass flow up to exapoise viscosities

    Get PDF
    Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent here these limitations, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong.Comment: 4 figures and 1 supplementary figur

    Coherence of the posterior predictive p-value based on the posterior odds.

    Get PDF
    ^aIt is well-known that classical p-values sometimes behave incoherently for testing hypotheses in the sense that, when Θ0⊂Θ0′\Theta_{0} \subset \Theta_{0}{'}, the support given to Θ0\Theta_{0} is greater than or equal to the support given to Θ0′\Theta_{0}^{'} . This problem is also found for posterior predictive p-values (a Bayesian-motivated alternative to classical p-values). In this paper, it is proved that, under some conditions, the posterior predictive p-value based on the posterior odds is coherent, showing that the choice of a suitable discrepancy variable is crucial

    Explosive Disintegration of a Massive Young Stellar System in Orion

    Full text link
    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations made with the Submillimeter Array (SMA) that indicate the well known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows which is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a 3D view of the debris flow and to link this directly to the well known Orion H2_2 "fingers" farther outComment: Accepted by ApJ Letters The 3D movie can be found in: ftp://ftp.mpifr-bonn.mpg.de/outgoing/lzapata/movie.gi

    Physical consequences of P≠\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    Chemical weathering of the volcanic soils of Isla Santa Cruz (Galápagos Islands, Ecuador)

    Get PDF
    We present a study on weathering of volcanic soils using 43 profiles (131 horizons) sampled in Santa Cruz Island (Galapagos Islands). Several weathering indices, based on chemical composition, are used. Since the geological material is highly homogeneous the intensity of weathering is mostly related to climatic conditions controlled by topography. There is a gradient of increasing weathering from the arid conditions predominant in the coast to elevations of 400-500 m a.s.l. where much more humid conditions prevail
    • …
    corecore