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1 Introduction

In the last years, several papers have been published analyzing possi-

ble alternatives to the classical p-value. The posterior predictive p-value

is a Bayesian-motivated alternative. The concept was �rst introduced by

Guttman (1967) and Rubin (1984), who used the posterior predictive distri-

bution of a test statistic to calculate the tail-area probability corresponding

to the observed value of the statistic. Such a tail-area probability is called

posterior predictive p-value by Meng (1994) (who extended the concept by

using discrepancy variables), whereas the tail-area probability used by Box

(1980) can be called prior predictive p-value. More recently, Bayarri and

Berger (1999) have introduced the conditional predictive p-value and the

partial posterior predictive p-value.

The asymptotic behaviour of the posterior predictive p-value was stud-

ied by De la Horra and Rodr��guez-Bernal (1997). Di�erent aspects of the

application of the posterior predictive p-value to the problem of goodness of

�t were analyzed by Gelman et al. (1996) and De la Horra and Rodr��guez-

Bernal (1999).

The concept of posterior predictive p-value is briey introduced in Sec-

tion 2. The concept of coherence of a p-value is introduced in Section 3.

Schervish (1996) showed that the classical p-value could behave incoherently

as a measure of support for hypotheses. A similar problem was pointed out

by Lavine and Schervish (1999) for Bayes factors and by De la Horra and

Rodr��guez-Bernal (2001) for the posterior predictive p-value.

The posterior predictive p-value based on the posterior odds is considered

in Section 4. De la Horra and Rodr��guez-Bernal (2000) proved the asymptotic

optimality of this posterior predictive p-value. In this paper, it is proved that,

under some conditions, this posterior predictive p-value behaves coherently

as a measure of support.

Finally, some examples are given in Section 5.

2 Posterior predictive p-value

Let x be an observation from the random variable X taking values in X

and having density function f(xj�); where � 2 �:We want to testH0 : � 2 �0

versus H1 : � 2 �1 = ���0:

The posterior predictive p-value is a Bayesian-motivated alternative to

1



the classical p-value introduced by Guttman (1967) and Rubin (1984) and

extended by Meng (1994). Let �(�) be the prior density summarizing the

prior information about �; and let D(x; �) be a discrepancy variable, where

a discrepancy variable is a function D : X � �0 ! IR+ measuring (in some

reasonable way) the \discrepancy" between the observation x and the pa-

rameter �: The concept of discrepancy variable D(x; �) was introduced by

Tsui and Weerahandi (1989) and is nothing but a generalization of a test

statistic D(x): In fact, the posterior odds we will use in Section 4 is simply

a test statistic.

The well-known classical p-value for testingH0 : � = �0 versus H1 : � 6= �0,

when the discrepancy variable D(x; �0) is used, will play an important role

in this paper:

p(x; �0) = Prfy 2 X : D(y; �0) � D(x; �0)j�0g =

Z
A�0

f(yj�)dy;

where A�0
= fy 2 X : D(y; �0) � D(x; �0)g:

We can now give the de�nition of posterior predictive p-value, such as it

was introduced by Meng (1994):

De�nition 1. The posterior predictive p-value for testing H0 : � 2 �0 versus

H1 : � 2 �1 = � � �0; when the discrepancy variable D(x; �) is used, is

de�ned as

p(x;�0) = Prf(y; �) 2 X � �0 : D(y; �) � D(x; �)jx;�0g

=

Z
A

f(y; �jx;�0)dyd�;

where A = f(y; �) 2 X ��0 : D(y; �) � D(x; �)g.

We will need to express p(x;�0) in an alternative way:
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p(x;�0) =

Z
A

f(y; �jx;�0)dyd�

=

Z
A

f(yj�)�(�jx;�0)dyd�

=

Z
�0

�Z
A�

f(yj�)dy

�
�(�jx;�0)d�

=

Z
�0

p(x; �)�(�jx;�0)d�

=

Z
�0

p(x; �)
�(�jx)

Pr(�0jx)
d�

=

R
�0

p(x; �)�(�jx)d�R
�0

�(�jx)d�
:

In this way, p(x;�0) is a ratio between the area under the posterior density

�(�jx); weighted by p(x; �); over �0; and the area under �(�jx) over �0:

Therefore, the classical p-value p(x; �) will play the role of a weight function.

3 Coherence

P -values are usually interpreted as a measure of support in favour of the

null hypothesis H0 : � 2 �0: Schervish (1996) used the following de�nition

of coherence for p-values:

De�nition 2. A measure of support for hypotheses is coherent if, when �0 �

�0
0; the support given to �0

0 is greater than or equal to the support given to

�0:

Schervish (1996) showed, through some examples, that the classical p-

value could behave incoherently. A similar problem was pointed out by

Lavine and Schervish (1999) for Bayes factors and by De la Horra and

Rodr��guez-Bernal (2001) for posterior predictive p-values.

In all the examples analyzed by De la Horra and Rodr��guez-Bernal (2001)

(where incoherences with posterior predictive p-values were detected), the

discrepancy variable considered was D(x; �) = jx � �j: In principle, that

seemed a natural choice, because D(x; �) = jx� �j is the usual discrepancy
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variable used for testing the value of the mean of Normal observations (as

in those examples), but incoherences may perhaps disappear if a Bayesian-

motivated discrepancy variable is used.

The following lemma gives a necessary and suÆcient condition for coher-

ence and will be used in Section 4:

Lemma 1. Let us consider �0 and �0
0; where �0 � �0

0: Then, p(x;�0) �

p(x;�0
0) if and only if

p(x;�0) �

R
�0

0
��0

p(x; �)�(�jx)d�R
�0

0
��0

�(�jx)d�

Proof. For any x; p(x;�0) � p(x;�0
0) if and only ifR

�0

p(x; �)�(�jx)d�R
�0

�(�jx)d�
�

R
�0

p(x; �)�(�jx)d� +
R
�0

0
��0

p(x; �)�(�jx)d�R
�0

�(�jx)d� +
R
�0

0
��0

�(�jx)d�
:

A little algebra leads toR
�0

p(x; �)�(�jx)d�R
�0

�(�jx)d�
�

R
�0

0
��0

p(x; �)�(�jx)d�R
�0

0
��0

�(�jx)d�
;

that is,

p(x;�0) �

R
�0

0
��0

p(x; �)�(�jx)d�R
�0

0
��0

�(�jx)d�
:

4 Main results

When we want to test H0 : � 2 �0 versus H1 : � 2 �1 = �� �0; a very

natural discrepancy variable (from the Bayesian viewpoint) is the posterior

odds:

D
�(x) =

Pr(�1jx)

Pr(�0jx):

This discrepancy variable is simply a test statistic (because it does not

depend on �) and has a very clear Bayesian meaning.
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De la Horra and Rodr��guez-Bernal (2000) extended work by Thompson

(1997) and proved that the posterior predictive p-value based on the posterior

odds has good asymptotic properties.

In this section, the coherence of the posterior predictive p-value p�(x;�0)

based on the posterior odds,

p
�(x;�0) =

R
�0

p
�(x; �)�(�jx)d�R
�0

�(�jx)d�
;

where p�(x; �) = Prfy 2 X : D�(y) � D
�(x)j�g; will be studied.

First of all, we have to express the weight function p�(x; �) in an alterna-

tive way:

D
�(y) � D

�(x) ()
Pr(�1jy)

Pr(�0jy)
�
Pr(�1jx)

Pr(�0jx)
(1)

() Pr(�0jy) � Pr(�0jx):

Therefore:

p
�(x; �) = Prfy 2 X : Pr(�0jy) � Pr(�0jx)j�g:

We can now prove that, under some conditions, the posterior predictive

p-value based on the posterior odds behaves coherently.

Theorem 1. Let x be an observation from the random variable X with den-

sity function f(xj�); where � 2 � � IR: Let us assume that

(i) f(xj�) is a monotonically decreasing function in jx� �j;

(ii) The posterior density �(�jx) is a monotonically decreasing function in

j� � g(x)j; for some monotonically increasing function g(x):

Then,

(a) For �0 = (�1; a) and �0
0 = (�1; b) (with a < b), we have p�(x;�0) �

p
�(x;�0

0):

(b) For �0 = (a;1) and �0
0 = (b;1) (with b < a), we have p�(x;�0) �

p
�(x;�0

0):
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Proof. (a)

����y�����x�

a g�x� g�y� �

Figure 1

For �0 = (�1; a); we have:

p
�(x; �) = Prfy 2 X : Pr(�0jy) � Pr(�0jx)j�g

= Prfy 2 X : g(y) � g(x)j�g (2)

= Prfy 2 X : y � xj�g (3)

where:

(2) is easily seen in Figure 1, by �(�jx) being a decreasing function in

j� � g((x)j (assumption (ii)),

(3) is true since g(x) is an increasing function (assumption (ii)).

f�y��2�f�y��1�

x�1 �2 �

Figure 2
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Moreover, p�(x; �) = Prfy 2 X : y � xj�g is a monotonically increasing

function in �; by assumption (i) (see Figure 2).

This reasoning is also valid for �0
0 = (�1; b) and, therefore, the weight

function p�(x; �) will be the same for computing p�(x;�0) and p
�(x;�0

0): We

have:

p
�(x;�0) =

R
�0

p
�(x; �)�(�jx)d�R
�0

�(�jx)d�

�

R
�0

p
�(x; a)�(�jx)d�R
�0

�(�jx)d�

= p
�(x; a) =

R
�0

0
��0

p
�(x; a)�(�jx)d�R

�0

0
��0

�(�jx)d�

�

R
�0

0
��0

p
�(x; �)�(�jx)d�R

�0

0
��0

�(�jx)d�
;

where the inequalities are true because p�(x; �) is an increasing function in

�: The result is now obtained by applying Lemma 1.

(b) The reasoning is analogous.

Theorem 2. Let x be an observation from the random variable X with den-

sity function f(xj�); where � 2 � � IR: Let us assume that

(i) f(xj�) is a monotonically decreasing function in jx� �j;

(ii) The posterior density �(�jx) is a monotonically decreasing function in

j� � cxj; for some c > 0:

Then, for �0 = (�a; a) and �0
0 = (�b; b) (with a < b), we have p�(x;�0) �

p
�(x;�0

0):
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Proof.

����y�����x�

a�a cx cy �

Figure 3

For �0 = (�a; a); we have:

p
�(x; �) = Prfy 2 X : Pr(�0jy) � Pr(�0jx)j�g

= Prfy 2 X : jcyj � jcxj j�g (4)

= Prfy 2 X : jyj � jxj j�g

where (4) is readily seen in Figure 3, by assumption (ii).

f�y���f�y���0�

�x�0��x� �

Figure 4

Moreover, p�(x; �) = Prfy 2 X : jyj > jxj j�g is a monotonically increas-

ing function in j�j; by assumption (i) (see Figure 4). Therefore, p�(x; �) is a

function of the form shown in Figure 5.
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p��x,��

aa b�b 0�a �

Figure 5

We remark that the reasoning is also valid for �0
0 = (�b; b) and, therefore,

the weight function p
�(x; �) will be the same for computing p

�(x;�0) and

p
�(x;�0

0):

We have:

p
�(x;�0) =

R
�0

p
�(x; �)�(�jx)d�R
�0

�(�jx)d�

�

R
�0

p
�(x; a)�(�jx)d�R
�0

�(�jx)d�
= p

�(x; a)

=

R
�0

0
��0

p
�(x; a)�(�jx)d�R

�0

0
��0

�(�jx)d�

�

R
�0

0
��0

p
�(x; �)�(�jx)d�R

�0

0
��0

�(�jx)d�
;

where the inequalities are true because p�(x; �) is an increasing function in

j�j (see Figure 5). The result is now obtained by applying Lemma 1.

Comments

a) It is important to remark why we have obtained coherence in these

cases. The key in the proofs is the form of the weight function p
�(x; �):

For instance, the form of p�(x; �) in Theorem 2 is shown in Figure 5. If we

would use the discrepancy variable D(x; �) = jx� �j (as in De la Horra and
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Rodr��guez-Bernal (2001)) instead of D�(x) =
Pr(�1jx)

Pr(�0jx)
(as in this paper), it

can be seen that p(x; �) would be of the form shown in Figure 6, and the

proof would not be possible.

p�x,��

aa b�b 0�a x �

Figure 6

b) Assumption (i) in Theorem 1 includes a large class of location families

that are common in statistical analysis. Assumption (ii) seems plausible with

g(x) identi�ed as a natural point estimate.

c) The result in Theorem 2 can be translated to the case in which �0 =

(�0�a; �0+a) and �0
0 = (�0� b; �0+ b) (with a < b). We have just to rewrite

the problem by considering the observation X 0 = X � �0 (instead of X), and

by considering the null hypotheses (�a; a) (instead of (�0 � a; �0 + a)) and

(�b; b) (instead of (�0 � b; �0 + b)).

5 Examples

The following examples show some important cases in which Theorems 1 and

2 apply.

Example 1.

X � N(�; �2) (�2 known)

�(�) / 1

�
=) �(�jx) � N(x; �2):

Assumptions in Theorems 1 and 2 are ful�lled by taking g(x) = x and

c = 1:
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We take �2 = 1 for obtaining the following tables (by simulation):

�0 = (�1;1) �0 = (0;1) �0 = (1;1)

x D
�(x) p

�(x) D
�(x) p

�(x) D
�(x) p

�(x)

-2 5.3030 0.0810 42.9558 0.0109 739.7970 0.0007

-1 1.0000 0.2404 5.3030 0.0788 42.9558 0.0114

0 0.1886 0.4091 1.0000 0.2619 5.3030 0.0786

1 0.0233 0.4860 0.1886 0.4193 1.0000 0.2375

2 0.0014 0.5071 0.0233 0.4833 0.1886 0.4159

�0 = (�1:5; 1:5) �0 = (�1; 1) �0 = (�0:5; 0:5)

x D
�(x) p

�(x) D
�(x) p

�(x) D
�(x) p

�(x)

0.1 0.1568 0.9372 0.4700 0.9301 1.6235 0.9230

0.2 0.1646 0.8752 0.4857 0.8606 1.6599 0.8473

0.3 0.1779 0.8120 0.5123 0.7911 1.7218 0.7724

0.4 0.1967 0.7511 0.5504 0.7296 1.8108 0.6999

0.5 0.2216 0.6987 0.6009 0.6639 1.9296 0.6310

1 0.4593 0.4447 1.0953 0.3902 3.1368 0.3381

1.5 1.0054 0.2916 2.3077 0.1968 6.3581 0.1491

2 2.2435 0.1608 5.3571 0.0928 15.5023 0.0561

2.5 5.3042 0.0789 14.0207 0.0359 45.7285 0.0172

3 13.9692 0.0348 43.0171 0.0120 166.307 0.0042

Example 2.

X � N(�; �2) (�2 known)

�(�) � N(�; � 2)

�
=) �(�jx) � N(�(x); � 2(x));

with

(
�(x) = �2

�2+�2
�+ �2

�2+�2
x

�
2(x) = �2�2

�2+�2

If we take g(x) = �2

�2+�2
�+ �2

�2+�2
x and c = �2

�2+�2
; assumptions in Theorem

1 are always ful�lled, and assumptions in Theorem 2 are ful�lled when � = 0.

We take � = 0 and �
2 = �

2 = 1 for obtaining the following tables (by

simulation):
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�0 = (�1;1) �0 = (0;1) �0 = (1;1)

x D
�(x) p

�(x) D
�(x) p

�(x) D
�(x) p

�(x)

-2 1.0000 0.0707 11.7146 0.0124 426.5570 0.0008

-1 0.3153 0.2466 3.1710 0.0905 58.0060 0.0135

0 0.0854 0.4796 1.0000 0.3103 11.7146 0.1001

1 0.0172 0.6602 0.3154 0.5688 3.1710 0.3532

2 0.0023 0.7867 0.0854 0.7707 1.0000 0.6640

�0 = (�1:5; 1:5) �0 = (�1; 1) �0 = (�0:5; 0:5)

x D
�(x) p

�(x) D
�(x) p

�(x) D
�(x) p

�(x)

0.1 0.0356 0.9344 0.1881 0.9278 0.9253 0.9229

0.2 0.0370 0.8686 0.1925 0.8580 0.9375 0.8475

0.3 0.0394 0.8034 0.1999 0.7904 0.9581 0.7727

0.4 0.0429 0.7408 0.2103 0.7229 0.9872 0.6994

0.5 0.0474 0.6793 0.2239 0.6592 1.0253 0.6298

1 0.0881 0.4258 0.3453 0.3782 1.3733 0.3361

1.5 0.1698 0.2450 0.5835 0.1917 2.0932 0.1505

2 0.3157 0.1326 1.0094 0.0866 3.4883 0.0549

2.5 0.5671 0.0683 1.7693 0.0340 6.2591 0.0169

3 1.0000 0.0263 3.1745 0.0109 12.1043 0.0043

Example 3.

X � f(xj�) =

8<
:

1 + x� � if x 2 (� � 1; �)

1� x+ � if x 2 [�; � + 1)

0 otherwise

�(�) / 1

9>>=
>>;

=) �(�jx) =

8<
:

1 + � � x if � 2 (x� 1; x)

1� � + x if � 2 [x; x + 1)

0 otherwise

Assumptions in Theorems 1 and 2 are ful�lled by taking g(x) = x and

c = 1: We get the following tables (by simulation):
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�0 = (�1;1) �0 = (0;1) �0 = (1;1)

x D
�(x) p

�(x) D
�(x) p

�(x) D
�(x) p

�(x)

-1.5 7.0000 0.0601 1 0.0000 1 0.0000

-1 1.0000 0.2573 1 0.0000 1 0.0000

-0.5 0.1429 0.4289 7.0000 0.0629 1 0.0000

0 0.0000 1.0000 1.0000 0.2546 1 0.0000

0.5 0.0000 1.0000 0.1429 0.4369 7.0000 0.0654

1 0.0000 1.0000 0.0000 1.0000 1.0000 0.2509

1.5 0.0000 1.0000 0.0000 1.0000 0.1429 0.4547

�0 = (�2; 2) �0 = (�1; 1) �0 = (�0:5; 0:5)

x D
�(x) p

�(x) D
�(x) p

�(x) D
�(x) p

�(x)

1 0.0000 1.0000 1.0000 0.2558 7.0000 0.0616

1.1 0.0050 0.5077 1.4691 0.2102 11.5000 0.0394

1.2 0.0204 0.4927 2.1250 0.1620 21.2222 0.0225

1.3 0.0471 0.4562 3.0816 0.1210 49.0000 0.0097

1.4 0.0869 0.4479 4.5556 0.0932 199.0000 0.0025

We remark that if we take �(�) � U(�M;M) in this example (instead of

�(�) / 1), the same posterior density is obtained, provided that �M < x�1

and x + 1 < M: In other words, the same results are obtained by taking a

uniform density as prior density, provided that its support is large enough.
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