1,709 research outputs found

    Ulva compressa from Copper-Polluted Sites Exhibits Intracellular Copper Accumulation, Increased Expression of Metallothioneins and Copper-Containing Nanoparticles in Chloroplasts

    Get PDF
    In order to analyze the mechanisms involved in copper accumulation in Ulva compressa, algae were collected at control sites of central and northern Chile, and at two copper-polluted sites of northern Chile. The level of intracellular copper, reduced glutathione (GSH), phytochelatins (PCs), PC2 and PC4, and transcripts encoding metallothioneins (MTs) of U. compressa, UcMT1, UcMT2 and UcMT3, were determined. Algae of control sites contained around 20 μg of copper g−1 of dry tissue (DT) whereas algae of copper-polluted sites contained 260 and 272 μg of copper g−1 of DT. Algae of control sites and copper-polluted sites did not show detectable amounts of GSH, the level of PC2 did not change among sites whereas PC4 was increased in one of the copper-polluted sites. The level of transcripts of UcMT1 and UcMT2 were increased in algae of copper-polluted sites, but the level of UcMT3 did not change. Algae of a control site and a copper-polluted site were visualized by transmission electron microscopy (TEM) and the existence of copper in electrodense particles was analyzed using energy dispersive x-ray spectroscopy (EDXS). Algae of copper-polluted sites showed electrodense nanoparticles containing copper in the chloroplasts, whereas algae of control sites did not. Algae of a control site, Cachagua, were cultivated without copper (control) and with 10 μM copper for 5 days and they were analyzed by TEM-EDXS. Algae cultivated with copper showed copper-containing nanoparticles in the chloroplast whereas control algae did not. Thus, U. compressa from copper-polluted sites exhibits intracellular copper accumulation, an increase in the level of PC4 and expression of UcMTs, and the accumulation of copper-containing particles in chloroplasts.This work was financed by Fondecyt Regular 1160013 to A.M and by Dicyt-USACH

    Estabilidad dinámica de buques en olas

    Get PDF
    The present work is about ship stability with an emphasis on the relationship it has with the movement of the waves, in order to introduce a discussion about the dynamic modes which lead to anguish at severe sea: simple loss of stability, rough inclination and parametric resonance.We present a summary on the occurrence and relevance of the rough inclination in stern sea and the parametric resonance in prow sea, for shallow-draft vessels. In order to study the influence of different parameters, two shallow-draft vessels are investigated for some speeds and conditions of load, in which rough inclination was reported in stern sea and parametric resonance in sea front. Experimental results are compared with numeric simulations, in order to, finally, discuss the use of stabilizing tanks in the control of parametric resonance.El presente trabajo discute la estabilidad de los buques con énfasis en el vínculo entre esta y el movimiento en las olas, con el fin de introducir una discusión sobre los modos dinámicos que llevan a la zozobra en mar severo: pérdida simple de estabilidad, guiñada brusca y resonancia paramétrica.Presentamos un sumario sobre la ocurrencia y relevancia de la guiñada brusca en mar de popa y la resonancia paramétrica en mar de proa, para embarcaciones menores. Con la finalidad de estudiar la influencia de diferentes parámetros, se investigan dos embarcaciones menores para algunas velocidades y condiciones de carga, en las que se reportó guiñada brusca en mar de popa y resonancia paramétrica en mar de frente. Se comparan resultados experimentales con simulaciones numéricas, para, finalmente, discutir el empleo de tanques estabilizadores en el control de la resonancia paramétrica

    Fundamental parameters of the massive eclipsing binary HM1 8

    Get PDF
    We present a comprehensive study of the massive binary system HM1 8, based on multi-epoch high-resolution spectroscopy, V-band photometry, and archival X-ray data. Spectra from the OWN Survey, a high-resolution optical monitoring of Southern O and WN stars, are used to analyse the spectral morphology and perform quantitative spectroscopic analysis of both stellar components. The primary and secondary components are classified as O4.5 IV(f) and O9.7 V, respectively. From a radial velocity (RV) study, we derived a set of orbital parameters for the system. We found an eccentric orbit (e = 0.14 ± 0.01) with a period of P = 5.87820 ± 0.00008 d. Through the simultaneous analysis of the RVs and the V-band light curve, we derived an orbital inclination of 70.0° ± 2.0 and stellar masses of Ma=33.6+1.4−1.2 M⊙ for the primary, and Mb=17.7+0.5−0.7 M⊙ for the secondary. The components show projected rotational velocities vasin i = 105 ± 14 km s−1 and vbsin i = 82 ± 15 km s−1, respectively. A tidal evolution analysis is also performed and found to be in agreement with the orbital characteristics. Finally, the available X-ray observations show no evidence of a colliding winds region; therefore, the X-ray emission is attributed to stellar winds.Fil: Rodríguez, C. L.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Ferrero, G. A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Benvenuto, Omar Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Gamen, Roberto Claudio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Morrell, Nidia Irene. Carnegie Institution For Science; ChileFil: Barbá, Rodolfo. Universidad de La Serena; ChileFil: Arias, J.. Universidad de La Serena; ChileFil: Massey, P.. Department Of Astronomy And Planetary Science; Estados Unidos. Lowell Observatory; Estados Unido

    Desalination brine effects beyond excess salinity: Unravelling specific stress signaling and tolerance responses in the seagrass Posidonia oceanica

    Get PDF
    Desalination has been proposed as a global strategy for tackling freshwater shortage in the climate change era. However, there is a concern regarding the environmental effects of high salinity brines discharged from desalination plants on benthic communities. In this context, seagrasses such as the Mediterranean endemic and ecologically important Posidonia oceanica have shown high vulnerability to elevated salinities. Most ecotoxicological studies regarding desalination effects are based on salinity increments using artificial sea salts, although it has been postulated that certain additives within the industrial process of desalination may exacerbate a negative impact beyond just the increased salinities of the brine. To assess the potential effect of whole effluent brines on P. oceanica, mesocosm experiments were conducted within 10 days, simulating salinity increment with either artificial sea salts or brines from a desalination plant (at 43 psμ, 6 psμ over the natural 37 psμ). Morphometrical (growth and necrosis), photochemical (PSII chlorophyll a fluorometry), metabolic, such as hydrogen peroxide (H2O2), thiobarbituric reactive substances (TBARS) and ascorbate/dehydroascorbate (ASC/DHA), and molecular (expression of key tolerance genes) responses were analyzed in each different treatment. Although with a still positive leaf growth, associated parameters decreased similarly for both artificial sea salt and brine treatments. Photochemical parameters did not show general patterns, although only P. oceanica under brines demonstrated greater energy release through heat (NPQ). Lipid peroxidation and upregulation of genes related to oxidative stress (GR, MnSOD, and FeSOD) or ion exclusion (SOS3 and AKT2/3) were similarly incremented on both hypersalinity treatments. Conversely, the ASC/DHA ratio was significantly lower, and the expression of SOS1, CAT, and STRK1 was increased under brine influence. This study revealed that although metabolic and photochemical differences occurred under both hypersalinity treatments, growth (the last sign of physiological detriment) was similarly compromised, suggesting that the potential effects of desalination are mainly caused by brine-associated salinities and are not particularly related to other industrial additives.This investigation was funded by Marie Skłodowska-Curie Action (888415) granted to C.A. Sáez. F. Blanco-Murillo was supported by a grant from Universidad de Alicante (Grant ID: FPUUA98). F. Rodríguez-Rojas was financed by the ANID project FONDECYT 11220425. C.A. Sáez was also financed by project ANID InES I+D 2021 (INID210013)

    In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer

    Get PDF
    Background: Breast cancer is the second leading cause of cancer death worldwide. Nanotechnology approaches can overcome the side effects of chemotherapy as well as improve the efficacy of drugs. Dendrimers are nanometric size polymers which are suitable as drug delivery systems. To the best of our knowledge, studies on the application of PAMAM G4.5 (polyamidoamine half generation 4) dendrimers as potential drug delivery systems in breast cancer have not been reported. In this work we developed a PAMAM G4.5 dendrimer containing FITC (fluorescein isothiocyanate) dye to study their uptake by murine breast cancer cells and BALB/c mice breast tumors. Results: We performed a reaction between FITC and PAMAM G4.5 dendrimers which were previously derivatized with piperazine (linker molecule), characterized them by 1H NMR (proton nuclear magnetic resonance) spectroscopy and MALDI-TOF (matrix-assisted laser desorption/ionization- time-of-flight) mass spectrometry. The experimental data indicated that 2 FITC molecules could be bound covalently at the PAMAM G4.5 dendrimer surface, with 17 FITC molecules probably occluded in PAMAM dendrimers cavity. PAMAM-FITC dendrimer (PAMAM G4.5-piperazinyl-FITC dendrimer) size distribution was evaluated by DLS (dynamic light scattering) and TEM (transmission electron microscopy). The nanoparticle hydrodynamic size was 96.3 ± 1.4 nm with a PdI (polydispersion index) of 0.0296 ± 0.0171, and the size distribution measured by TEM was 44.2 ± 9.2 nm. PAMAM-FITC dendrimers were neither cytotoxic in 4T1 cells nor hemolytic up to 24 h of incubation. In addition, they were uptaken in vitro by 4T1 cells and in vivo by BALB/c mice breast tumors. PAMAM G4.5-piperazinyl-FITC dendrimer intracellular distribution was observed through histologic analysis of the tumor by laser confocal microscopy. Conclusion: These results indicate that PAMAM G4.5 dendrimers enter tumor tissue cells, being good candidates to be used as antitumor drug delivery systems for breast cancer treatment and diagnosis

    Contrasting parental roles shape sex differences in poison frog space use but not navigational performance.

    Get PDF
    Sex differences in vertebrate spatial abilities are typically interpreted under the adaptive specialization hypothesis, which posits that male reproductive success is linked to larger home ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced male spatial performance may be a byproduct of higher androgen levels. Animal groups that include species where females are expected to outperform males based on life-history traits are key for disentangling these hypotheses. We investigated the association between sex differences in reproductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked individuals in natural environments to show that contrasting parental sex roles shape sex differences in space use, where the sex performing parental duties shows wider-ranging movements. We then translocated frogs from their home areas to test their navigational performance and found that the caring sex outperformed the non-caring sex only in one out of three species. In addition, males across species displayed more explorative behavior than females and androgen levels correlated with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive strategies shape movement patterns but not necessarily navigational performance. Together this work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differences in spatial abilities

    Resolvin E1 attenuates doxorubicin-induced cardiac fibroblast senescence: A key role for IL-1β

    Full text link
    Cardiac fibroblasts (CFs) undergo senescence in reaction to different stressors, leading to a poor prognosis of cardiac disease. Doxorubicin (Doxo) is an antineoplastic drug with strong cardiotoxic effects, which induces IL-1β secretion and thus, triggers a potent pro-inflammatory response. Doxo induces CFs senescence; however, the mechanisms are not fully understood. Different pharmacological strategies have been used to eliminate senescent cells by inducing their apoptosis or modifying their secretome. However, Resolvin E1 (RvE1), a lipid derivative resolutive mediator with potent anti-inflammatory effects has not been used before to prevent CFs senescence. CFs were isolated from adult male C57BL/6J mice and subsequently stimulated with Doxo, in the presence or absence of RvE1. Senescence-associated β-galactosidase activity (SA-β-gal), γ-H2A.X, p53, p21, and senescence-associated secretory phenotype (SASP) were evaluated. The involvement of the NLRP3 inflammasome/interleukin-1 receptor (IL-1R) signaling pathway on CFs senescence was studied using an NLRP3 inhibitor (MCC950) and an endogenous IL-1R antagonist (IR1A). Doxo is able to trigger CFs senescence, as evidenced by an increase of γ-H2A.X, p53, p21, and SA-β-gal, and changes in the SASP profile. These Doxo effects were prevented by RvE1. Doxo triggers IL-1β secretion, which was dependent on NLRP3 activation. Doxo-induced CFs senescence was partially blocked by MCC950 and IR1A. In addition, IL-1β also triggered CFs senescence, as evidenced by the increase of γ-H2A.X, p53, p21, SA-β-gal activity, and SASP. All these effects were also prevented by RvE1 treatment. Conclusion: These data show the anti-senescent role of RvE1 in Doxo-induced CFs senescence, which could be mediated by reducing IL-1β secretion.This study was supported by PID2020-115590RB-100/AEI/ 10.13039/501100011033 and FONDECYT 1210627 to C.P., C.F.S.F., and G.D.A., respectively. L.S. and J.A.E.C. are the recipients of FPI Universidad Autonoma ´ de Madrid (SFPI/2020-00053) and Beca Doctorado Nacional Ano ˜ 2017 ANID (21170233) fellowships, respectivel

    Reducción de selenito a Selenio elemental por Pantoea agglomerans

    Get PDF
    Selenium is required and essential for the growth and metabolism of several biological systems. Its transformation in the environment occurs mainly by the activity of microorganisms, able to reduce selenite into elemental Selenium. Pantoea agglomerans UC-32 reduces selenite to nanoparticles of elemental Selenium. The aims of this work were to determine the kinetics of selenite reduction and to determine the cellular localization of this activity in P. agglomerans UC-32. The selenite reducing activity of P. agglomerans UC-32 was assayed in the presence of different selenite concentrations and the decrease of selenite and appearance of elemental Selenium were evaluated. The location of this activity was studied by cellular fractioning and zymography. Results indicated that the selenite reducing enzyme saturates at low concentrations of this compound and the zymogram localized this activity in the cytoplasmic fraction and showed that NADPH is required as coenzyme. In conclusion, P. agglomerans reduces, under aerobic conditions, selenite into insoluble elemental Selenium, immobilized in the biomass and that the enzyme catalyzing this reduction is cytoplasmatic. These characteristics would allow the "green synthesis" of selenium nanoparticles which have application in the bioremediation of different contaminated matrices, such as soil or water.El selenio es esencial y requerido por distintos sistemas biológicos para su crecimiento y metabolismo. Su transformación en el ambiente ocurre principalmente por microorganismos que reducen el selenito a selenio elemental. Pantoea agglomerans UC-32 reduce el selenito a nanopartículas de selenio elemental. El objetivo de este trabajo fue determinar la cinética de reducción de selenito a selenio elemental y la ubicación celular de la actividad reductora en Pantoea agglomerans UC-32. Se ensayó la actividad reductora de P. agglomerans frente a diferentes concentraciones de selenito, evaluándose la disminución de selenito y aparición de selenio elemental. La ubicación de la actividad reductora fue estudiada por fraccionamiento celular y zimograma. Al ensayar la actividad reductora de selenito se encontró que la enzima se satura a concentraciones bajas de este compuesto y el zimograma localizó esta actividad en la fracción citoplasmática y que requiere NADPH como coenzima. En conclusión, P. agglomerans es capaz de reducir selenito a selenio elemental insoluble inmovilizado en la biomasa en condiciones aeróbicas y que la enzima que cataliza esta reducción se localiza en la fracción de citoplasmática. Estas características permitirían la "síntesis verde" de nanopartículas de selenio las cuales tienen aplicación en la biorremediación de diferentes matrices, como suelo o agua contaminadas

    Transcriptomic profiles and diagnostic biomarkers in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa reveal mechanistic insights of adaptative strategies upon desalination brine stress

    Get PDF
    Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.FRR was financed by Fondecyt #11220425 grant from ANID, Chile. CAS was financed by project ANID InES I + D 2021 (INID210013) and by Marie Skłodowska-Curie Action (888415). FBM was supported by a grant from Universidad de Alicante (Grant ID: FPUUA98)
    corecore