8 research outputs found

    The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs

    Get PDF
    BACKGROUND: It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. METHODS/PRINCIPAL FINDINGS: We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). CONCLUSIONS: The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies

    Genome-scale metabolic models highlight stage-specific differences in essential metabolic pathways in Trypanosoma cruzi.

    No full text
    Chagas disease is a neglected tropical disease and a leading cause of heart failure in Latin America caused by a protozoan called Trypanosoma cruzi. This parasite presents a complex multi-stage life cycle. Anti-Chagas drugs currently available are limited to benznidazole and nifurtimox, both with severe side effects. Thus, there is a need for alternative and more efficient drugs. Genome-scale metabolic models (GEMs) can accurately predict metabolic capabilities and aid in drug discovery in metabolic genes. This work developed an extended GEM, hereafter referred to as iIS312, of the published and validated T. cruzi core metabolism model. From iIS312, we then built three stage-specific models through transcriptomics data integration, and showed that epimastigotes present the most active metabolism among the stages (see S1-S4 GEMs). Stage-specific models predicted significant metabolic differences among stages, including variations in flux distribution in core metabolism. Moreover, the gene essentiality predictions suggest potential drug targets, among which some have been previously proven lethal, including glutamate dehydrogenase, glucokinase and hexokinase. To validate the models, we measured the activity of enzymes in the core metabolism of the parasite at different stages, and showed the results were consistent with model predictions. Our results represent a potential step forward towards the improvement of Chagas disease treatment. To our knowledge, these stage-specific models are the first GEMs built for the stages Amastigote and Trypomastigote. This work is also the first to present an in silico GEM comparison among different stages in the T. cruzi life cycle

    Genome-scale metabolic models highlight stage-specific differences in essential metabolic pathways in Trypanosoma cruzi.

    No full text
    Chagas disease is a neglected tropical disease and a leading cause of heart failure in Latin America caused by a protozoan called Trypanosoma cruzi. This parasite presents a complex multi-stage life cycle. Anti-Chagas drugs currently available are limited to benznidazole and nifurtimox, both with severe side effects. Thus, there is a need for alternative and more efficient drugs. Genome-scale metabolic models (GEMs) can accurately predict metabolic capabilities and aid in drug discovery in metabolic genes. This work developed an extended GEM, hereafter referred to as iIS312, of the published and validated T. cruzi core metabolism model. From iIS312, we then built three stage-specific models through transcriptomics data integration, and showed that epimastigotes present the most active metabolism among the stages (see S1-S4 GEMs). Stage-specific models predicted significant metabolic differences among stages, including variations in flux distribution in core metabolism. Moreover, the gene essentiality predictions suggest potential drug targets, among which some have been previously proven lethal, including glutamate dehydrogenase, glucokinase and hexokinase. To validate the models, we measured the activity of enzymes in the core metabolism of the parasite at different stages, and showed the results were consistent with model predictions. Our results represent a potential step forward towards the improvement of Chagas disease treatment. To our knowledge, these stage-specific models are the first GEMs built for the stages Amastigote and Trypomastigote. This work is also the first to present an in silico GEM comparison among different stages in the T. cruzi life cycle

    How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell.

    Get PDF
    ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle

    Immunological and parasitological parameters in Schistosoma mansoni-infected mice treated with crude extract from the leaves of Mentha x piperita L.

    No full text
    Schistosomiasis is a chronic disease caused by an intravascular trematode of the genus Schistosoma. Praziquantel is the drug used for treatment of schistosomiasis; nevertheless failure of treatment has been reported. Consequently, the identification of new effective schistosomicidal compounds is essential to ensure the effective control of schistosomiasis in the future. In this work we investigated the immunomodulatory and antiparasitic effects of the crude leaves extract of Mentha x piperita L. (peppermint) on murine Schistosomiasis mansoni. Female Balb/c mice were infected each with 50 S. mansoni cercariae and divided into three experimental groups: (I) untreated; (II) treated daily with M. x piperita L (100 mg/kg) and III) treated on 1/42/43 days post-infection with Praziquantel (500 mg/kg). Another group with uninfected and untreated mice was used as a control. Subsequently, seven weeks post-infection, S. mansoni eggs were counted in the feces, liver and intestine. Worms were recovered by perfusion of the hepatic portal system and counted. Sera levels of IL-10, IL-5, IL-13, IFN-gamma, IgG1, IgE and IgG2a were assayed by ELISA. Animals treated with a daily dose of M. x piperita L showed increased sera levels of IL-10, IFN-gamma, IgG2a and IgE. Besides, M. x piperita L. treatment promoted reduction in parasite burden by 35.2% and significant decrease in egg counts in the feces and intestine. (C) 2014 Elsevier GmbH. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore