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Abstract

ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for

macromolecules as well as for the assembly of the latter into cellular structures. Other cellu-

lar processes not directly related to synthesis of biomass, such as maintenance of mem-

brane potential and cellular shape, also require ATP. The unicellular flagellated parasite

Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this

parasite in its bloodstream form (BSF) is glucose, which is abundant in the host’s blood-

stream. Here, we made a detailed estimation of the energy budget during the BSF cell

cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite

produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves

biomass maintenance and duplication) accounts for ~63% of the total energy budget, while

the total biomass duplication accounts for the remaining ~37% of the ATP consumption,

with in both cases translation being the most expensive process. These values allowed us

to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical Ymax
ATP of 28.6 (g

biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and

maintenance of transmembrane potential account for less than 30% of the consumed ATP.

Finally, there is still ~5.5% available in the budget that is being used for other cellular pro-

cesses of as yet unknown cost. These data put a new perspective on the assumptions

about the relative energetic weight of the processes a BSF trypanosome undergoes during

its cell cycle.
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Author summary

Cells use ATP as the main energy currency for the synthesis, organization and mainte-

nance of their macromolecules and cellular structures, in order to stay alive and prolifer-

ate. For this purpose, ATP is produced from external nutrients, and is spent by cells in the

many processes that are necessary for maintenance and building up new cells. Despite its

relevance and the impressive quantity of biological data available, very little is known

about how much ATP is required for maintaining and duplicating a cell. In this paper, we

present a calculation on how much of the ATP produced by catabolism of the nutrient

glucose is used to energize the different processes known to occur during the cell cycle of

the infective form of the trypanosomatid parasite that causes human sleeping sickness, the

bloodstream form of Trypanosoma brucei.

Introduction

ATP hydrolysis provides most of the free energy used by cells to power biological processes

including the metabolic reactions required to build up the biomass for cell proliferation and

maintenance. It is possible to estimate the amount of ATP hydrolysis needed for most biologi-

cal processes and thereby calculate the global ATP expenditure by a cell [1]. During the process

of building a new cell, ATP hydrolysis is required for synthesis and polymerization of mono-

mers such as dNTPs and rNTPs for nucleic acids, amino acids for proteins, fatty acids for

phospholipids and monosaccharides for oligo- and polysaccharides. ATP hydrolysis is also

required for the assembly of complex cell structures such as macromolecular complexes and

organelles. Cells may acquire precursors for monomer synthesis or take up ready-to-use

monomers from the extracellular environment, but these uptake processes also require ATP

hydrolysis. Furthermore, ATP is necessary for other cellular processes that are not directly

related to the synthesis of biomass, such as maintenance of membrane potentials and cellular

shape, self-organization, motility, and turnover of molecules.

Parasitic organisms are intriguing in that they may differ in many aspects of their energy

expenditure from their free-living counterparts. On the one hand, they may abandon (a some-

times very large) part of their biosynthetic activities if they can acquire multiple nutrients from

their host. On the other hand, they may have to invest considerable energy in invasion of the

host and in strategies to survive in an environment that tries to tame or kill them [2]. For the

present work, we set out to estimate the energy expenditure of the trypanosomatid parasite

Trypanosoma brucei. T. brucei is a unicellular flagellated parasite with a complex life cycle

involving insect and mammalian hosts. During its life cycle, T. brucei transitions through dif-

ferent cell forms, each one adapted to the specificities of the environment it colonizes. In the

gut of the insect vector–the tsetse fly–, amino acids such as proline are abundant and serve

preferentially as the energy source for the so-called procyclic trypanosome when glucose is

absent [3,4]. In the bloodstream of the mammalian host T. brucei can occur in two different

developmental forms: long-slender, proliferating trypanosomes and short-stumpy forms.

When triggered by a quorum-sensing mechanism, the long-slender trypanosomes differentiate

to non-proliferating short-stumpy forms which are competent to develop into procyclic forms

when ingested by a tsetse fly [5].

In the blood of the mammalian host, glucose is abundantly available, and it is well estab-

lished that it is the main source of ATP used by the long-slender bloodstream form (BSF) of

the parasite for its proliferation and to survive different environmental challenges [6,7]. Both

procyclic and bloodstream forms of T. brucei can be easily cultivated in vitro in semi- or
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completely defined media [8,9], which has enabled the detailed investigation of the end-prod-

ucts obtained from different substrates as well as the estimation of metabolic fluxes. In these

organisms, the major part of the glycolytic pathway is compartmentalized in peroxisome-

related organelles called glycosomes [10,11]. Noteworthy, while procyclic forms can oxidize

metabolites (including glucose-derived pyruvate) in their single mitochondrion, under most

conditions the BSF obtain their energy by aerobic fermentation with no involvement of oxida-

tive phosphorylation (OxPhos).

The total energy cost of a biological process can be expressed as the summation of the direct

costs (amount of the necessary ATP hydrolysis) spent on all energy-requiring processes [12].

In contrast to most bacteria and yeasts, BSF T. brucei use very little of the glucose consumed to

synthesize biomass [12]. Noteworthy, these trypanosomes depend on extracellular availability

of other essential nutrients to serve as carbon sources for the biosynthesis of precursors of

macromolecules for biomass. Thus, the measured rate of glucose consumption, together with

the fact that almost all glucose consumed by the BSF is directed to ATP formation allows calcu-

lation of the total amount of ATP produced per cell cycle. We can also estimate the ATP

expenditure during a cell cycle as other relevant parameters are known such as doubling time,

molecular content, genome size, transcriptome and proteome half-lives, and cell motility.

For some free-living prokaryotic and eukaryotic microorganisms, calculations of metabolic

energy obtained (mostly transduced into ATP) from external sources have been reported pre-

viously ([13–15]. These calculations included energy obtained from external sources (oxida-

tion of organic or inorganic molecules; absorbance of light) through different processes and

the energy used for different activities (biosynthesis of macromolecules, biogenesis of (sub)cel-

lular structures, transmembrane transport of molecules, motility, etc.). Here, we present a

detailed estimation of the energy (ATP) budget and the energy costs of the two main commit-

ments that a long-slender BSF T. brucei has during a cell cycle: to stay alive (maintenance) and

to make a new cell (duplication). We found that the production of biomass, including the turn-

over of parts of its components under standard cultivation conditions, accounts for approxi-

mately 62% of the energy budget, with translation being the most “expensive” process. We

estimated the extent to which several other cellular processes are responsible for using the

remaining ATP that these cells produce.

Results

How much ATP is produced by T. brucei BSF during a cell cycle?

The BSF T. brucei model studied. The BSF of T. brucei is one of the relevant trypanoso-

matids for public health, and the availability of data about the various activities it exerts when

parasitizing its mammalian hosts, such as proliferation, catabolic and anabolic processes,

endocytosis, motility, among others led us to select it to estimate its ATP budget for cell main-

tenance during a cell cycle and for making an entirely new cell. Most data that we used for cal-

culation of the ATP production have previously been obtained by using T. brucei strain Lister

427, BSF cell line 449 [13]. Trypanosomes of this Lister 427 strain are monomorphic, with the

BSF occurring only as proliferating long-slender forms because they are incapable of differen-

tiating to stumpy forms. Within specific cell population densities in vitro growth is exponential

and the specific glycolytic flux is constant [12]. For the costs of making the building blocks of

the cell such as dNTPs and amino acids, we used available data on the characterized biosyn-

thetic pathways as well as the genome annotation for the presence of still uncharacterized path-

ways. For those biological processes in which energy costs are not yet fully understood for T.

brucei, we made inferences based on data available for other organisms.

PLOS PATHOGENS How much (ATP) does it cost to build a trypanosome?

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011522 July 27, 2023 3 / 35

https://doi.org/10.1371/journal.ppat.1011522


As previously mentioned, BSF T. brucei rely (almost) completely on glycolysis for their

energy requirements and excrete nearly all pyruvate produced rather than further oxidizing it

in the mitochondrion [12]. The first seven enzymes of the glycolytic pathway are compartmen-

talized in peroxisome-related organelles called glycosomes [11]. The reoxidation of the glycoly-

tically produced NADH occurs through the transfer of the electrons by a shuttle mechanism

from the glycosomes to the mitochondrion, in which glycolytically produced dihydroxyace-

tone phosphate is reduced to glycerol 3-phosphate with the concomitant oxidation of NADH

to NAD+ by a glycosomal glycerol-3-phosphate dehydrogenase. In turn, the produced glyc-

erol-3-phosphate is oxidized back to dihydroxyacetone phosphate by a mitochondrial glyc-

erol-3-phosphate dehydrogenase, with the concomitant reduction of FAD to FADH2 which, in

aerobic conditions, is reoxidized to FAD by the transfer of electrons to oxygen catalyzed by the

trypanosome alternative oxidase [16]. Summarizing, this shuttle occurs without classical

OxPhos [10,11]. In fact, in this stage of the parasite’s life cycle, enzymes of the tricarboxylic

acid (TCA) cycle are either absent or severely downregulated [17], and the F1FO-ATP synthase

complex works in “reverse mode” accounting for an H+/ATPase activity pumping protons

into the intermembrane space, for the maintenance of the mitochondrial membrane potential

[18–20]. Due to the absence of classical OxPhos, glycolysis is the main source of ATP in BSFs

[21]. Net production of ATP, and thus the free-energy yield of glycolysis occurs in the cytosol

and almost entirely comes from the flux through the enzyme pyruvate kinase [13]. It has been

shown that some ATP synthesis can occur in the mitochondrion by the acetate:succinate CoA

transferase / succinyl-CoA synthetase (ASCT/SCS) cycle, which can use as a substrate acetyl-

CoA derived from relatively minute amounts of pyruvate routed to the mitochondrion and/or

from threonine oxidation. However, the amount of ATP produced by this system is small

when compared to that produced by glycolysis and may vary depending on conditions [10,22].

Taking all this information into account, we can proceed to make a reliable estimation of the

total amount of ATP that is produced during a complete cell cycle, in which an entire Trypano-
soma cell is built.

According to data from Haanstra et al. (2012) [13] when BSF T. brucei strain Lister 427, cell

line 449 was growing exponentially in HMI-9 medium (for composition see S1 Table) at 37˚C

in the presence of 25 mM of glucose, the glucose consumption flux was 160 nmol/(min x 108

cells). It has been reported that 98% of consumed glucose (~155 nmol/min x 108 cells) is

directed towards pyruvate under aerobic conditions [23,24]. However, it should be noted that,

depending on the culture conditions, a small part of glycolytically-derived metabolites can be

used for the synthesis of sugar nucleotides [25], inositol [26], acetate [27,28], amino acids such

as asparagine and alanine [28], which can contribute to anabolic processes. Stoichiometrically,

the glycolytic breakdown of one molecule of glucose yields two molecules of pyruvate, and

each of these is accompanied with the yield of one ATP, resulting in an ATP synthesis flux of

310 nmol/(min x 108 cells). This flux remains constant throughout the exponential prolifera-

tion phase [12], and therefore we calculated the total amount of ATP produced by one cell dur-

ing one cell cycle (5.3 h in the experiment by Haanstra et al. 2012 [13]; for details see Materials

and Methods), which results in 6.0 x 1011 molecules of ATP/(cell cycle x cell). Considering that

the total ATP concentration in mid-log cultured BSF T. brucei 427 is about 5 mM [29] and the

cell volume 45 μm3 [30], we estimated the number of moles of ATP/cell as being 2.25 x 10−16

moles, corresponding to 1.3 x 108 ATP molecules/cell. As 6.0 x 1011 molecules of ATP are pro-

duced per cell cycle, the ATP pool is ~4,500 times turned over during the cell cycle. With a cell

cycle duration of 5.3 h (318 min), the ATP pool is turned over 14.5 times per minute.

The cost of genome duplication. To express and transmit its genetic information, every

cell needs to duplicate and spatially organize its DNA, transcribe the information into RNA,

and translate it into functional proteins. The energy requirements of each of these processes
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differ and include the costs of making, assembling, and processing the building blocks of each

polymer. Cells duplicate their genome once during the cell cycle, which requires activated

nucleotides. It has been established for yeast and bacteria that the cost of de novo synthesis of

all requisite nucleotides from glucose is approximately 50 ATPs per nucleotide [14]. Trypano-

somatids lack the purine de novo biosynthetic pathway [31] and therefore rely on the purine

salvage pathway by import of appropriate nitrogenous bases to be used as precursors for the

synthesis [32]. In addition, trypanosomatids can synthesize pyrimidines from glutamine and

aspartate, both present in the HMI-9 culture medium. So far, there is no evidence that it can

import thymidine or thymine (reviewed in [33]). Based on the metabolic pathways predicted

from the T. brucei genome for purine salvage and pyrimidines biosynthesis we calculated the

ATP cost for the biosynthesis of each nucleotide (Table 1), starting from the precursors avail-

able in the culture medium: hypoxanthine (for purine salvage) and glutamine and aspartate

(for the de novo synthesis of pyrimidines). The direct costs of making the other metabolites

required in these pathways were also included (S2, S3 and S4 Tables). On average, T. brucei
spends 11.5 ATP molecules for the biosynthesis of one purine and 9 ATPs for the biosynthesis

of one pyrimidine (Table 1). The T. brucei haploid genome has an approximate size of 35 Mbp

(TriTrypDB; https://tritrypdb.org/tritrypdb/app) and consists of 11 megabase chromosomes, a

few intermediate chromosomes, and hundreds of minichromosomes [34]. Given the cost of

each dNTP and the GC content of the T. brucei genome, the estimated total cost of the synthe-

sis of the necessary number of dNTPs for the entire diploid genome duplication in one cell

cycle is then 1.4 x 109 ATPs.

Other costs involved in genome duplication were estimated. First, there is the cost of

unwinding of the DNA double-helix. Using the yeast value, where this process costs one ATP

per nucleotide [35], in T. brucei it will require 7 x 107 ATPs in total. Next, some ATP is needed

for the synthesis of the small RNA primers (~10 nt) necessary for the initiation of nucleotide

polymerization during duplication of the lagging strand of DNA, which involves the formation

of the Okasaki fragments. The number of the necessary RNA primers depends on the number

of the origins of replication (ORI) and the size of the intervals between them. In yeast, the

length of the Okasaki fragment is ~165 nt, with 10 nt corresponding to the RNA primer [36].

Taking into account that: i. the haploid genome has 35 Mb; ii. the lagging strand during DNA

replication is fully replicated based on the synthesis of Okasaki fragments; and iii. that each

Okasaki fragment has a length of ~165 nt, the total number of Okasaki fragments needed for

the genome replication can be obtained from the ratio between the genome size and the length

of the Okasaki fragment. The obtained value indicates that 4.2 x 105 is the minimum number

of RNA primers necessary to produce the Okasaki fragments necessary to duplicate the whole

diploid genome. The average cost of rNTP synthesis in T. brucei is 5 ATPs per unit (see

below). Therefore, the costs associated with RNA primer synthesis are 2.1 x 107 ATPs. After

the synthesis of Okasaki fragments, DNA ligase uses 2 ATPs to ligate each pair of fragments,

which then costs 8.4 x 105 ATPs in this parasite. Last, there is an ATP cost associated with the

assembly of the polymerase-containing sliding clamp. On average, 3 ATPs per complex are

Table 1. ATP cost for the synthesis of deoxyribonucleotides for T. brucei genome duplication.

dNTP ATP cost % of the genome Total cost

dCTP 12 22.8 3.8 x 108

dTTP 6 27.2 2.3 x 108

dATP 11 27.2 4.2 x 108

dGTP 12 22.8 3.8 x 108

Total 1.4 x 109

https://doi.org/10.1371/journal.ppat.1011522.t001
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necessary [37]. Since duplication of the lagging strand requires one sliding clamp per fragment

to be synthesized, T. brucei requires approximately 1.3 x 106 ATPs in this step. As a whole, the

contribution of these processes to the total cost is minor when compared to the cost of nucleo-

tide synthesis (Table 2).

There is still a series of costs that is too small to be relevant to the total cost of genome dupli-

cation. One example is the ATP investment associated with opening the ORIs. It has been esti-

mated as being at least 20 ATPs per ORI [14]. In T. brucei, there is a minimum number of 33

ORIs necessary to replicate the 11 megabase chromosomes [38], which adds at least 1,320 ATP

molecules per S-phase of the cell cycle. Additionally, T. brucei has at least 6 intermediate-sized

chromosomes and about 50–100 minichromosomes [39]. Assuming that there is at least one

ORI per intermediate and minichromosome, there will be an additional requirement of about

620 to 2,120 ATP molecules. Other costs such as for proofreading, DNA repair, and epigenetic

modifications are still to be fully elucidated. The total cost for the nuclear genome duplication

is estimated as being 1.49 x 109 ATP molecules.

The cost of kDNA duplication

The mitochondrial genome of T. brucei is contained in a unique structure called the kineto-

plast. The DNA present in the kinetoplast (kDNA) consists of a concatenated network of two

classes of circular DNA: the maxicircles (~23 kb) and minicircles (~1 kb). Maxicircles are pres-

ent in a low-copy number (~30 per cell) and encode proteins of the mitoribosomes, some of

the proteins of the complexes of the respiratory chain, and two rRNAs. Remarkably, most of

these genes in maxicircles are encrypted and their transcripts need to undergo editing before

translation. The RNA editing process is mediated by guide RNAs (gRNAs) that are transcribed

from the minicircles. There are approximately 6,000 minicircles per cell with at least 391 differ-

ent sequences encoding different gRNAs [40]. Because of the intricate nature of the kDNA, the

process of its duplication is rather complex. On one hand, minicircles are released from the

core of the network, unwound, duplicated and then reassembled back in the periphery of the

network. On the other hand, maxicircles are duplicated inside the network, but the exact

mechanism is still unknown (reviewed in [41]).

As has been described for genome replication, dozens of proteins participate in kDNA

duplication, including helicases, topoisomerases, polymerases, primases and ligases (reviewed

in [42]). As the same classes of proteins are involved in both processes, we assumed similar

costs for the initiation of each replication unit to those estimated for the nuclear genome dupli-

cation. Therefore, we used the rationale and estimations described in the previous section: (i)

DNA unwinding, which costs 1 ATP per nucleotide, resulting in 0.69 x 106 ATPs for maxi-

and 6 x 106 ATPs for minicircle duplication; (ii) RNA primer synthesis costs 50 ATPs per

Table 2. Summary of ATP costs associated with nuclear and mitochondrial genome duplication (maxicircles and minicircles) of T. brucei.

Process ATP cost

Nuclear genome Maxicircles Minicircles

dNTP synthesis 1,400 x 106 6.9 x 106 60 x 106

DNA unwinding 70 x 106 0.69 x 106 6 x 106

RNA primer synthesis 21 x 106 0.21 x 106 1.8 x 106

Okasaki fragments ligation 0.84 x 106 0.0084 x 106 0.073 x 106

Sliding clamp assembly 1.3 x 106 0.012 x 106 0.11 x 106

Opening of ORIs negligible negligible 0.12 x 106

Total 1,493 x 106 7.8 x 106 68.1 x 106

https://doi.org/10.1371/journal.ppat.1011522.t002
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primer, resulting in 0.21 x 106 ATPs for maxi- and 1.8 x 106 ATPs for minicircles; (iii) Okasaki

fragments ligation costs 2 ATP per ligation resulting in 0.0084 x 106 ATPs for maxi- and 0.073

x 106 ATPs for minicircles; and (iv) sliding clamp assembly which costs 3 ATPs on average,

resulting in 0.012 x 106 ATPs for maxi- and 0.11 x 106 ATPs for minicircles (Table 2).

Some peculiarities regarding the kDNA and its replication required an adjustment in the

calculations. First, although the sequence of kDNA is mostly known, the distribution of the

391 types of minicircles varies from 1 to 144 copies per cell [40]. This makes the accurate GC-

content hard to estimate. For this reason, we assumed a 50% CG content and an average syn-

thesis cost of 10 ATPs per nucleotide. Accordingly, the cost of the dNTPs for maxicircle dupli-

cation is 6.9 x 106 ATPs and 60 x 106 ATPs for minicircle duplication. Second, according to

the calculations made for nuclear genome DNA replication, the cost for opening the origins of

replication is 20 ATPs per ORI. We have previously considered this cost negligible due to the

low number of ORIs necessary to duplicate the whole nuclear genome. Although this number

is still negligible for the duplication of maxicircles (~600 ATPs), due to the number of minicir-

cles (20 ATPs per ORI for 6,000 ORIs), this cost becomes more relevant for their duplication,

and it totalizes 0.12 x 106 ATP molecules (Table 2). The duplication of the mitochondrial

genome (maxicircles and minicircles) costs 0.0759 x 109 ATP molecules. In total, duplicating

both the nuclear and the mitochondrial genome requires an estimated 1.57 x 109 ATP

molecules.

The cost of transcription of the nuclear genome

In T. brucei BSF, RNA Pol I transcribes the gene arrays for ribosomal RNAs (rRNAs) and a

telomeric expression site containing a single variant surface glycoprotein (VSGs) gene. This

specific gene comes out of a very large repertoire of which one VSG is expressed at a given

time. However, together with this VSG gene, a set of genes called Expression Site Associated

Genes (ESAGs) are transcribed that lie upstream of the VSG gene [43–45]. Most of them

encode proteins with still unknown biological function. RNA Pol II transcribes all other pro-

tein-coding genes as well as the genes for a spliced leader (SL) RNA, whilst RNA Pol III tran-

scribes genes encoding snRNAs, tRNAs, and 5S RNAs [46,47]. In trypanosomatids, genes are

organized in tandem arrays which are transcribed in a polycistronic manner. The resulting

long precursor RNAs are processed by trans-splicing and polyadenylation. Consequently,

mature individual mRNAs containing a 39 nt SL with a 5´cap and a 3´poly-A tail are produced

[48]. It means that, differently from organisms that regulate transcription initiation and termi-

nation of each gene, trypanosomatids transcribe coding genes that are not needed in a specific

condition (e.g. the tandemly-arranged genes encoding PGKA, B and C are all transcribed

simultaneously, but B or C is degraded depending on the life-cycle stage [49–51]), as well as

intergenic regions and then degrade them once the mature mRNAs are formed.

Regarding the ATP costs of transcription, we estimated the ATP costs for synthesis of an

entire set of transcripts and the ATP costs associated with their maintenance (turnover). For

that purpose, we used most of the data and assumptions used for the model developed by

Haanstra and collaborators for different aspects of BSF T. brucei gene expression [51]. In this

paper, they also reported values and estimations for numbers and half-lives of four types of

RNAs: i. rRNAs; ii. RNAs encoding VSGs; iii. mRNAs; iv. SL-RNAs (Table 3). For the ATP

expenditure calculation, we considered the cost of synthesis of the rNTPs to be used as mono-

mers, the cost of each polymerization reaction, and the steady-state number of molecules of

each RNA-type produced per cell (N) and the average length of the mature RNA (L).

Synthesis of the transcriptome. The production cost of the nucleotides is on average 5

ATPs per rNTP (Tables 4 and S3). The total synthesis cost for the four RNA populations is 5 x
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N x L [15]. Therefore, the resulting synthesis cost for the rRNA population is 5 x 125,000 x

6,100 = 380 x107 ATPs, for the VSG mRNAs 0.86 x 107 ATPs, for the set of other mRNAs 21

x107 ATPs and for the SL-RNAs 0.35 x 107 ATPs per cell cycle (Table 5).

Maintenance of the transcriptome (turnover). Assuming that ribonucleotides are effi-

ciently recycled, the cost invested in recharging the rRMPs to rRTPs is 2 ATPs [14]. Consider-

ing the half-lives (t1/2) of each set of RNAs, the maintenance cost is the cost of replacing the

RNAs degraded during the cell cycle. Given the doubling time of BSF T. brucei, here taken as

5.3 hours (see above) and the half-life of each set of RNA, we calculated the number of RNA

molecules of each class that must be resynthesized during a cell cycle for replacement (Nr = 1

—N(t)) where N(t) is calculated by using the exponential decay function:

N tð Þ ¼ N0 �
1

2

� � t
t1=2

in which N(t) is the remaining number of molecules after a given time t, N0 is the initial num-

ber of molecules, t1/2 is the average half-life of each set of RNA molecules, and t is the time con-

sidered (here the time for the completion of a cell cycle). We obtained that Nr is 32,965 for

rRNAs, 993 for VSG mRNAs, 18,988 for all other mRNAs and 19,987 for the SLs. Hence, as we

considered a complete recycling of the ribonucleotides obtained from the RNA degradation

(NMPs), the cost for maintaining the whole transcriptome is the cost of recharging the nucleo-

tides to be polymerized. For each RNA subset we calculated the cost as 2 x Nr x L. According

to this, the total cost for the maintenance of each type of RNA is 40 x 107 for rRNAs and 0.34 x

107 ATPs for VSG mRNAs, whereas the maintenance of the remaining set of mRNAs costs 8.3

x 107 ATPs, and the cost calculated for SL-RNAs is 0.14 x 107 ATPs (Table 5).

Polymerization of rNTPs of intergenic regions. As the intergenic regions are transcribed

and degraded to monomers after RNA processing, we considered that the ribonucleotides

used in the transcription of intergenic regions are efficiently recycled. However, the cost

invested in polymerizing the ribonucleotides of the intergenic regions must be estimated. For

this purpose, we used the difference in length between the whole precursor and the mature

transcripts and applied the same calculations for the polymerization costs of the intergenic

regions as used for those to calculate the cost of the synthesis and maintenance of the mature

transcriptome [52]. For the VSG transcripts, the whole transcript length is considered as being

Table 4. ATP cost for the synthesis of ribonucleotides.

rNTP ATP cost

CTP 5

UTP 4

ATP 5

GTP 6

https://doi.org/10.1371/journal.ppat.1011522.t004

Table 3. Data from Haanstra et al., 2008 [52] used in this work.

Process rRNA VSG mRNA Total other mRNAs SL-RNA

Number of molecules per cell (N) 125,000 1,000 19,000 20,000

Half-life 12 h 45 min 30 min 30 min

Transcript length* 8,550 nt 1,720 nt 2,800 nt 141 nt

Mature transcript length (L) 6,100 nt 1,720 nt 2,200 nt 39 nt

*The value for the transcript VSG 117 was mistyped in Haanstra et al. (2008) and is corrected here on the basis of [52]

https://doi.org/10.1371/journal.ppat.1011522.t003
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the same of the mature transcript length [51,52]. However, VSG genes are transcribed together

with the ESAGs in a polycistronic manner in one out of the about 15 telomeric bloodstream

expression sites (BES) that is activated. Therefore, we calculated the total length of the inter-

genic regions of the polycistron. For this, we used data from the BES 40 containing the VSG

221 gene [53]. The whole length of BES 40 is 59.78 kb. It contains 18 protein-coding sequences

including the VSG with a cumulative length of 25.15 kb. For the estimation of the UTR regions

(which are also part of the mature RNAs) we used the median length of 130 nt for the 5´UTR

and 399 nt for the 3´ UTR [54] except for the VSG, where we considered the whole size of

1,720 nt [51,52]. So, the total length of the polycistron that is maintained as mRNA is 34.44 kb.

Therefore, the intergenic regions that are transcribed and further degraded are estimated as

being 25.34 kb long. Applying the same calculations for synthesis (5 x N x L) and maintenance

(2 x Nr x L) for the polymerization used above, we estimated the total cost of intergenic tran-

scription for synthesis of a new set of rRNAs, VSG/ESAGs, mRNAs of other proteins, and

SL-RNAs as being 150 x 107, 13 x 107, 5.7 x 107 and 1.05 x 107 ATPs, respectively, per cell

cycle. Additionally, the cost for polymerizing intergenic regions during the maintenance of the

RNA pools is 16 x 107 for rRNAs, 5 x 107 for VSGs/ESAGs, 2.3 x 107 for mRNAs of other pro-

teins, and 0.42 x 107 for SL-RNAs (Table 5).

Nucleosome displacement. Another cost associated with transcription is related to the

displacement of the nucleosomes. This process involves various histone posttranslational mod-

ifications [55]. T. brucei expresses four out of the five canonical eukaryotic variants of histones

(H2A, H2B, H3, and H4) and they serve as boundaries for polycistronic units [56,57]. The

length of DNA wrapped around each nucleosome is ~147 nt and the length of the strands link-

ing two nucleosomes is ~43 nt in T. brucei [58]. Considering these numbers and the total

DNA length, the number of nucleosomes can be estimated as being 3.7 x 105 per diploid

genome. Assuming a minimum cost of 30 ATPs per set of modifications in one nucleosome

[14] and that once the chromatin is open for transcription it remains in this state, the mini-

mum cost of displacing the nucleosome barriers during transcription is 1.1 x 106 ATPs per cell

cycle (Table 5).

Splicing. By far the major part of the mRNA maturing process occurs by trans-splicing

(with only two exceptions reported [59]). In trans-splicing, similarly to cis-splicing, two trans-

esterification reactions unite two RNA fragments (reviewed in [54]). Cis-splicing costs at least

10 ATPs per intron [14,60] and here we consider the same cost for trans-splicing. Considering

the synthesis and maintenance of mRNA levels, the cost of trans-splicing in a new set of

mRNAs is 10 x N, which results in 2 x 105 ATPs per cell cycle. Additionally, the cost of trans-

Table 5. Summary of costs in molecules of ATP associated with nuclear transcription per cell cycle of T. brucei.

Process Synthesis Maintenance Total ATP cost

rRNA 380 x107 40 x 107 420 x 107

VSG mRNA 0.86 x107 0.34 x 107 1.2 x 107

other mRNA 21 x107 8.3 x 107 29.3 x 107

SL RNA 0.35 x 107 0.14 x 107 0.49 x 107

nucleosome displacement* 0.12 x 107 - 0.12 x 107

polymerization intergenic regions 169.75 x 107 23.72x107 193.47 x 107

trans-splicing 0.02 x 107 0.019 x 107 0.039 x 107

Total 572.1 x 107 72.52 x 107 644.62 x 107

* This is an estimation of the minimum ATP cost for this process. Due to the lack of experimental data, it is not possible to determine the contribution of this cost to the

maintenance of the RNA pools.

https://doi.org/10.1371/journal.ppat.1011522.t005
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splicing during the maintenance of mRNA levels is 10 x Nr, resulting in 1.89 x 105 ATPs per

cell cycle (Table 5).

In summary, transcription of the nuclear genome costs ~6.4 x 109 ATP molecules. Costs

associated with other aspects of transcription such as the formation of the transcriptional com-

plexes are too small or have not been completely elucidated and therefore are not considered

here. As an example, in eukaryotes, RNA pol II transcription initiates with the recruitment of

the polymerase to the promoter region by multiple transcription factors. Subsequently, the

DNA helix is unwound, forming an open complex (OC). These processes cost at least 20 ATPs

per OC [14,61,62]. Because of the polycistronic transcription, fewer OCs are necessary to initi-

ate transcription in trypanosomatids. As there are no available data for the cost of the forma-

tion of OCs for RNA polymerases I and III, we estimated the cost of the OCs for the genes

transcribed by RNA pol II. In the 11 pairs of megabase-size chromosomes there are *380

RNA pol II transcribed polycistronic units in the housekeeping regions [63] with an estimate

of 50 genes per polycistron. If we consider that once the OC is formed it remains open during

all rounds of transcription, 380 OCs are needed to initiate transcription by RNA pol II. This

results in a minimum cost for OCs of ~7.6 x 103 ATPs per cell cycle. On the other hand, we

can consider that one OC is formed on each round of transcription. In that case, the necessary

OCs for RNA II pol transcription can be estimated as:

OC ¼ ðNþ NrÞ=50 ¼ 760

Thus, ~760 OCs are necessary for RNA pol II transcription, resulting in a cost of 1.5 x 104

ATPs per cell cycle. Either way, these costs are negligible to the total transcriptional cost. Simi-

larly, transcriptional termination is likely to be less costly in trypanosomatids, since it happens

at transcription termination sites marked by histone variant H3.V and base J, a modified thy-

mine detected in the nuclear DNA of trypanosomatids and related protists grouped in the

Euglenozoa clade [64,65]. Additionally, some transcriptional costs have not been completely

elucidated. For example, phosphorylation of the C-terminal domain of RNA pol II regulates

different aspects of transcription [66]. However, the number of phosphorylation events per

transcriptional cycle in trypanosomatids has not been determined yet. Another process related

to transcription of which the exact costs are difficult to calculate is RNA nuclear export. Inter-

estingly, although this process is ATP dependent in opisthokonts [67], the lack of many

ATPases in the nuclear pore complex of trypanosomatids suggests that mRNA nuclear export

is GTP driven in these organisms [68,69]. Assuming that the amount of HEBs (high-energy

bonds) consumed by T. brucei for RNA nuclear export is the same as that consumed by yeast

(i.e., 2 ATP molecules per transcript) [70,71] we can estimate a cost for the export of the total

number of rRNAs (those for maintenance and those for duplication) minus the SL-RNAs,

which remain in the nucleus. The total HEB equivalent to ATP used for this process is 3.1 x

105 for rRNAs, 4.0 x 103 for VSG mRNAs and 7.6 x 104 for all other mRNAs. Therefore, under

the assumption that the cost per RNA exported from the trypanosome nucleus to the cyto-

plasm is similar to that in yeast, the total cost for RNA export is 3.9 x 105 HEBs, equivalent to

ATP molecules. Regardless of the case, these costs remain to be determined with more

precision.

The costs of transcription of kDNA

The maxicircles of the kDNA code for 2 rRNAs and 18 proteins [72]. It is currently accepted

that, similarly to what happens in the trypanosomatid nucleus and mitochondria of other

organisms, transcription of the maxicircles is polycistronic and that the long pre-RNAs are

processed at both ends to generate mature RNAs [73,74]. However, it has been recently
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proposed that this transcription might be gene-specific and promoter-regulated [75,76]. Addi-

tionally, transcripts from 12 of these genes, named cryptogenes, need to undergo further pro-

cessing by RNA editing to generate translation-competent mRNAs. This editing consists of the

insertion and/or deletion of uridines and is mediated by gRNAs transcribed from the minicir-

cles present in the kDNA (reviewed in [77]). Once transcribed, these gRNAs are also processed

by 3’-5’ trimming and U-tailing and stabilized by their ligation to the RNA-editing substrate-

binding complex (RESC) (reviewed in [76]). Multiple gRNAs are necessary for the editing of a

single maxicircle-encoded mRNA ([78]).

To estimate the minimal cost of kDNA transcription, and due to the lack of data on the

number of kDNA transcripts per BSF cell and their half-lives, we assumed that maxicircle tran-

scription has similar dynamics to that of nuclear transcription. Noteworthy, expression of

most of the mtDNA genes is developmentally regulated but, in the model of polycistronic tran-

scription, this regulation is likely to be posttranscriptional [74]. Thus, considering a similar

ratio of the number of transcripts/genes to the nucleus, and the number of maxicircles (~30)

present in the kDNA, we estimated an average of 480 molecules of mRNA and 35,700 mole-

cules of rRNA per BSF mitochondrion. The average length of the mature fully-edited mito-

chondrial rRNAs and mRNAs was considered to be 880 nt and 933 nt, respectively [72]. With

a cost of 5 ATPs for the synthesis of each rNTP (Table 4), efficient recycling of the ribonucleo-

tides once the RNAs are degraded, 2 ATPs for recharging each monomer [14], and similar

half-lives to those RNAs encoded by the nuclear genome, we calculated that 17.3 x 107 and 0.3

x 107 ATP molecules are necessary to synthesize the estimated pool of mitochondrial rRNAs

and mRNAs, respectively. In the polycistronic model of transcription, intergenic regions are

transcribed and, after RNA processing, the rNTPs are recycled. For that reason, it is necessary

to estimate the polymerization cost of the intergenic regions of the polycistrons transcribed

from the maxicircles. Given the size of each maxicircle (~23 kb) and the sum of the average

length of mature RNAs (18,554 nt) we considered that 4,446 nt are polymerized for each maxi-

circle, resulting in a consumption of ~2.7 x 105 ATP molecules.

To have a more complete estimation of the total transcriptional cost of the mitochondrial

genome, it is necessary to estimate the cost of the transcription of gRNAs. Transcription of the

minicircles generates an 800 nt precursor [79], encoding 2–5 gRNAs each, with an average

length of 49 nt [80]. It means that, on average, for each minicircle, 678 rNTPs are polymerized

and then recycled after processing. Considering the number of 6,000 minicircles per cell [40]

and that at least one of each gRNA will be transcribed, the minimal cost for minicircles tran-

scription is the cost of the polymerization of the rNTPs of the intergenic regions, which is ~0.8

x 107 ATP molecules, plus the cost of synthesis and polymerization of the rNTPs in the mature

gRNAs, which is ~0.4 x 107 ATP molecules. Thus, transcription of the minicircles costs, at

minimum, 1.2 x 107 ATPs per cell cycle.

Assuming that transcription of maxicircles has a similar global dynamic as that of nuclear

transcription, and that each minicircle is only transcribed once per life cycle, we calculated the

cost of transcription of the mitochondrial genome at 18.8 x 107 ATP molecules (Table 6). It is

worth mentioning that these are likely underestimations due to the scarce knowledge of the

ATP expenditure of each process involved in kDNA transcription, pre-RNA processing and

Table 6. Summary of ATP costs per cell cycle associated with kDNA transcription.

Process Maxicircles Minicircles

Transcription 17.6 x 107 0.4 x 107

Polymerization of intergenic regions 0.03 x 107 0.8 x 107

Total 17.6 x 107 1.2 x 107

https://doi.org/10.1371/journal.ppat.1011522.t006
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mRNA editing. However, it should be noted that even if kDNA transcription would be several

folds more expensive, it remains small in relation to the total cellular transcription cost.

Energy expenditure for proteome synthesis, maintenance, degradation

Regarding the biosynthesis of proteins, we must take into account the cost of obtaining their

components, the amino acids. For this, we consider two sources for these metabolites: their

uptake from the environment, and their biosynthesis de novo. The present work is based on

data obtained by culturing the parasites in a very rich medium containing all the amino acids,

so in this condition, and probably also in vivo in the bloodstream, it is reasonable to assume

that most of their requirements are fulfilled through their acquisition from the extracellular

medium. However, we made also an estimation of the cost of the de novo synthesis for those

amino acids having their biosynthetic pathways predicted from the genome sequence as this

estimation could be of general interest (see S1 Text).

To determine how much ATP is spent by BSF T. brucei on protein synthesis, we first esti-

mated the number of amino acids present in its proteome from the cell’s known volume and

the calculated protein density. The volume of T. brucei BSF (1K1N, i.e. one kDNA network

and one nucleus, after cell division, before DNA replication) cells is ~45 μm3 [30]. According

to the method proposed by Milo (2013) [81], we calculated the number of proteins per cell

based on the protein mass per unit volume (cp) in grams of protein per milliliter of cell volume,

which has been estimated for several cell types as being 0.2 g/ml [81,82]. Other relevant param-

eters taken into account are the average length of proteins (laa) (300 amino acids according to

[83]), and the average molecular mass of amino acids (maa) (110 Da). Therefore, laa x maa is the

average molecular mass per protein and the molar concentration of proteins is:

N
V
¼

cp
laa x maa

¼ 6:1 mM

where N/V is the average number of moles of proteins per unit volume. For converting these

values into the number of proteins per μm3, we applied the following equation:

N
V
¼ 6:1 x 10� 3 Molar x NA x 10� 12 ml

mm3

where NA is Avogadro´s number. The obtained value is 3.7 x 106 proteins/μm3. Therefore, con-

sidering a cell volume of 45 μm3 we obtained a number of proteins per cell of 166.5 x 106.

With an average protein length of 300 amino acids [83], we then calculated that a single cell

contains 5.0 x 1010 amino acids as protein components (in other words, forming peptide

bonds). The direct cost of polymerization is 4 ATPs per amino acid [84], so the direct cost of

translation, for a single cell, is about ~2.0 x 1011 ATPs to double the entire set of proteins

(Table 7).

During the BSF trypanosome’s cell cycle, part of its proteins has to be degraded and

replaced by new proteins to be synthesized. The balance between these processes represents

Table 7. Summary of ATP costs associated with protein synthesis and degradation during a cell cycle of BSF T.

brucei.

Process ATP cost

Proteome doubling 1.9 x 1011

Protein degradation 0.18 x 1011

Protein resynthesis 1.4 x 1011

Total 3.48 x 1011

https://doi.org/10.1371/journal.ppat.1011522.t007
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the cell’s protein turnover. Its cost must be added to that of the entire proteome doubling dur-

ing the parasite’s growth and division. We considered for our calculations only regulated pro-

tein degradation, which requires an expenditure of 100–200 ATP molecules per degraded

protein [14,85]. Here we assumed an average value of 150 ATPs per degraded protein. A prote-

omic turnover study determined that this process is directly influenced by the duration of the

cell cycle. For this, the duration of BSF trypanosomes cell cycle was determined as being 11.85

h. This remarkable difference with the duration considered in our study can be explained by

the fact that the authors performed this estimation for parasites growing under protein labeling

conditions (data were obtained using SILAC labeling for proteomics). Under these conditions,

the estimated a half-life for the entire proteome was 5.6 h [86]. As we are using, in this work,

the duration of the BSF cell cycle of 5.3 h, we made an estimation of energy cost of the prote-

ome’s turnover in our model by scaling the half-life using the rationale described in Tinti et al.

(2019) [86]. The obtained value for the proteome half-life was then 2.56 h, meaning that,

according to the exponential decay law, during an entire cell cycle 76% of the proteome is

degraded. Therefore, 1.2 x 108 proteins per cell are degraded during a cell cycle, at a total cost

of 1.8 x 1010 ATP molecules (Table 7). At the same time, to maintain the entire proteome, the

same quantity of these proteins must be newly synthesized at a cost of 1.4 x 1011 ATP

(Table 7). This, added to the synthesis of an extra net set of proteins for obtaining an entire

proteome for each daughter cell, requires 3.3 x 1011 ATP molecules per cell cycle for protein

synthesis. In summary, the total cost for degradation, resynthesizing and doubling of the pro-

teome is ~3.5 x 1011 ATP molecules (Table 7).

Energy cost of sugar nucleotides used in the synthesis of the VSG coat

In the BSF of T. brucei, the major surface protein is the VSG, which is highly glycosylated. The

VSG polypeptide is estimated as being present in 107 copies per cell, representing approxi-

mately 90% of cell surface polypeptides and 10% of total cellular protein content [87]. There-

fore, the sugar nucleotides used in the synthesis of the VSGs require by far the major part of

the ATP dedicated to the synthesis of the entire pool of sugar nucleotides in these cells. Trypa-

nosomatids’ survival, infectivity, and virulence in their mammalian hosts are directly influ-

enced by their cell surface glycoconjugates. The amount of sugar nucleotide used for their

synthesis was calculated based on previous estimates [25]. For this, certain conditions were

assumed: i) the metabolites are evenly distributed throughout the cell volume; ii) the demand

for each sugar nucleotide is minimal and for this calculation we did take into account the gly-

coconjugates turnover; iii) the contributions of low-abundance glycoconjugates are considered

negligible; and iv) an average glucidic composition of Man15GlcNAc/GlcN5.5Galp5 [87], based

on that of VSG variant 221 (a.k.a. MITat 1.2). On these bases, we estimated the need for 5 x

107 UDP-Galp, and the same quantity of UDP-GlcNAc. Also, 15 x 107 units of GDP-Man are

required. Considering an average ATP expenditure of 4 HEBs per nucleotide sugar, the total

ATP requirement for synthesizing the glucidic moieties of 107 VSGs is ~1 x 109 ATP molecules

per cell during a cell cycle (Table 8).

Table 8. Estimation of ATP cost for the synthesis of sugar nucleotides for T. brucei VSGs per cell cycle.

Sugar Nucleotide HEBs per molecule SN in VSG HEBs per SN HEBs per cell

UDP-Galp 4 5 20 2 x 108

UDP-GlcNAc 4 5 20 2 x 108

GDP-Man 4 15 60 6 x 108

Total 1 x109

https://doi.org/10.1371/journal.ppat.1011522.t008

PLOS PATHOGENS How much (ATP) does it cost to build a trypanosome?

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011522 July 27, 2023 13 / 35

https://doi.org/10.1371/journal.ppat.1011522.t008
https://doi.org/10.1371/journal.ppat.1011522


Energy expenditure for doubling the lipidome of T. brucei BSF

One of the basic needs for cell proliferation is the production of a new set of lipids for synthe-

sizing the external and internal membranes. However, we have not found in the literature an

estimate of the total energy cost necessary for doubling the total cell membrane content. BSF

T. brucei can obtain its lipids by two different routes [88,89]: either from the mammalian host

plasma, mainly by receptor-mediated endocytosis of LDL particles [90] or by de novo synthe-

sis. The contribution of both routes may vary dependent on external conditions. A calculation

of the cost of lipid acquisition by uptake from the host is an integral part of the estimation of

the total cost of the formation of endocytic vesicles described below. Given that T. brucei’s
total pool of phospholipids and sterols [91–93], as well as their biosynthesis pathways [94–97]

have been characterized in detail, it allowed us to estimate the energy requirements when dou-

bling of the lipidome content of BSF trypanosomes would entirely occur by de novo routes.

For this purpose, we considered the number of HEBs used in the biosynthetic pathways of

each species of phospholipid and ergosterol. With this information, we were able to estimate

the amount of ATP needed for their doubling (Table 9).

The total amount of ATP consumed during the cell cycle of T. brucei, for the entire lipi-

dome doubling (which includes the cost of membrane doubling) is 1.19 x 1010 ATP molecules.

Noteworthy, among the costs calculated (Table 9), the lipid species that are most energy

demanding are ergosterol (36%), PC (31.6%), PE (13.7%) and SM (12%), respectively.

Energy expenditure on polyphosphate synthesis

Polyphosphates (polyP) are linear polymers of a few to many hundreds of inorganic phosphate

(Pi) residues linked by HEBs. They are arbitrarily divided into two forms: short-chain (SC,

from 3 to*300 Pi) and long-chain (LC, from 300 to *1000 Pi), based on the method used for

their extraction [98]. In trypanosomatids, the polyP has been proposed to be associated with

several biological functions, such as osmoregulation [99], Ca2+ signaling [100] and energy

source storage [99]. Most polyPs in trypanosomatids are concentrated in acidocalcisomes [99],

although polyP has also been found in the nucleus, cytosol and glycosomes. However, in BSF,

polyPs have been detected mostly in acidocalcisomes and glycosomes [101]. PolyP is very

abundant in BSF: 600 μM for LC and 250 μM for SC[102]). As the amount of polyP is mea-

sured by the molarity of phosphate units, these concentrations correspond to the number of

monomers in the polymerized inorganic phosphates [103]. So, we consider LC+SC as the total

Table 9. Lipid composition and energy cost of biosynthesis for each molecular species in BSF of T. brucei.

Species %mol [Conc.] (nmol per mg

protein)

Number of HEBs for

biosynthesis

nmolHEB per ug

protein

nmol HEB per

parasite

ATP molecules per

parasite

PC 47.8 171.6 4 686.4 6.86 x 10−6 4.1 x 109

PE 20.7 74.313 4 297.252 2.97 x 10−6 1.8 x 109

PI 5.4 19.386 4 77.544 7.75 x 10−7 4.7 x 108

PS 3 10.77 4 43.08 4.31 x 10−7 2.6 x 108

CL1 0.715 2.56 8 20.48 2.05 x 10−7 1.2 x 108

PG1 0.485 1.74 4 6.96 6.96 x 10−8 4.2 x 107

Ergosterol2 13.8 49.54 12 594.48 5.94 x 10−6 3.6 x 109

SM 14.5 52.055 4 (5 for IPC or EPC) 247.7 2.48 x 10−6 1.5 x 109

Total 1.97 x 10−5 1.19 x 1010

PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; CL, cardiolipin; PG, phosphatidylglycerol SM,

sphingomyelin. 1 Based on the molar fraction of PG/CL found in the procyclic form; 2 compositions were observed in neutral fractions. E.U., Elementary Units.

https://doi.org/10.1371/journal.ppat.1011522.t009
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concentration of polyP corresponding to 850 μM. Based on a cellular volume of 45 μm3 per

individual cell [30] (equivalent to 0.045 picoliters), the 850 μM of Pi polymerized in polyP cor-

responds to ~38 attomoles/cell. As each Pi corresponds to one HEB, which is equivalent to one

ATP molecule, the total ATP required to synthesize the BSF’s whole content of polyP is 3.8 x

10−17 mol of ATP, in other words, 2.3 x 107 ATP molecules per parasite. Knocking out the Vac-

uolar Transporter Chaperone 4 in T. brucei caused a decrease of 25% of the total polyP [104].

As BSF are not challenged by strong osmolarity or nutritional variations (the main processes

in which polyP are spent [104]) during their in vitro proliferation, we assume that this is the

global rate of polyP degradation per cell cycle (5.3 h). Certainly, the ATP spent for polyP syn-

thesis during the in vivo infection is higher since the parasites are subjected to blood osmolar-

ity up to 1,400 mOsmol/l when they pass through the vasa recta of the mammalian kidney

medulla [105], considerably higher than the ~300 mOsmol/l in the global circulation [106]. It

has been reported that hyperosmotic stress increases polyP synthesis [107]. During a cell cycle,

BSF has to synthesize at least a new set of polyP for replication and renew the 25% of the polyP

stock. Thus, the total ATP demand for synthesizing a new set of polyPs and maintaining the

existing one is 2.9 x 107 molecules. According to Liu et al., translocation of polyP across mem-

branes is coupled to the polymerization of Pi and occurs without extra ATP cost [108]. we

assumed that the total number of ATP molecules used for polyP synthesis (including its trans-

location from the cytosol into organelles) is equivalent to the total Pi units polymerized. This

implies a total consumption of 2.9 x 107 ATP molecules per cell cycle.

Vitamins and other micronutrients

Trypanosomes also need vitamins and other micronutrients whose biosynthetic processes

and/or uptake require ATP. Mechanisms for uptake from the medium have been identified for

choline [109], pyridoxine (vitamin B6) [110] and riboflavin (vitamin B2) [111]. Ascorbic acid

(vitamin C) biosynthesis has been identified in T. brucei, with the last step taking place within

glycosomes [112]. Vitamin B1 is especially interesting because it is not efficiently taken up

under physiological conditions suggesting that its intracellular levels must be obtained via bio-

synthesis [113]. Overall, considering the nutrients mentioned above, there is still much to be

elucidated. Although there is evidence that biosynthesis occurs for some vitamins, such as B1

and B6, the pathways themselves are not understood in detail [110,113]. All works referenced

in this section that identified an uptake mechanism for nutrients describe passive processes.

Even if some of these compounds are biosynthesized, most of them are produced in low quan-

tities. In summary, there is no evidence that these processes impact ATP levels meaningfully.

Our conclusion for now, with some reservations, is that vitamin transport and biosynthesis do

not have a significant impact on the energy budget of the parasite.

ATP requirement for transmembrane transport

The cellular uptake of molecules and ions is part of the cell maintenance processes, and in

most cases, it has an energy cost [15]. The energy dedicated to cell maintenance includes a con-

tribution necessary for preserving a homeostatic ionic composition [114]. The energy demand

by the uptake of amino acids, ammonium, potassium ions and inorganic phosphate from the

extracellular medium into the cell was previously estimated for the synthesis of a new micro-

bial cell, in casu Escherichia coli [13]. To obtain a value for the energy demand of BSF transport

processes, we used the calculations made by Stouthamer as a model (Table 10). Stouthamer

assumed that 0.5 moles of ATP are necessary for the uptake of 1 mole of NH4
+, and 1 mole of

ATP is necessary for the uptake of 1 mole of Pi, any amino acid, acetate or malate. For Na+ and

K+ data are available for BSF T. brucei, allowing us to make a quite accurate calculation, and

PLOS PATHOGENS How much (ATP) does it cost to build a trypanosome?

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011522 July 27, 2023 15 / 35

https://doi.org/10.1371/journal.ppat.1011522


the cost of moving them across the plasma membrane was estimated separately (see below). It

is worth mentioning that Stouthamer did not consider the costs of taking up glucose, which

could be relevant for many prokaryotes but not for T. brucei where glucose transport happens

by facilitated diffusion [115,116]. For E. coli, depending on the culture conditions, between

18.3 and 19.4% of the total energy required for a cell formation is needed only for overall sol-

utes uptake [14]. Due to the lack of other data, we considered that BSF of T. brucei uses an

intermediate percentage of its total ATP budget for solutes uptake (18.9%), representing ~1.1 x

1011 ATP/ cell cycle x cell. For the calculation of costs of the transport of Na+ and K+, we used

data previously obtained [117,118]. Considering that the ouabain-sensitive BSF Na+/K+

ATPase has a specific activity for ATP hydrolysis of ~1.17 nmoles/min x mg in which ATP is

hydrolyzed into ADP + Pi with the concomitant exchange of 3 Na+ for 2 K+ [117,119], and

that 1 mg of proteins is equivalent to 108 BSF cells [120], we calculated that a continuous activ-

ity of this pump during 5.3 hours would result in an ATP cost of 2.2 x 105 ATP molecules per

cell during an entire cell cycle. This value is negligible when compared to the total cost of

transport of other ions and metabolites. Additionally, H+-ATPase is important to regulate the

intracellular pH of BSF T. brucei and an approximate value of 534 nmol/min x mg protein was

reported for the H+ efflux [121]. Taking account of this value and the Stouthamer assumptions,

we estimated that ~1.02 x 1010 ATP molecules are necessary for the H+ efflux per cell during

an entire cell cycle. Several H+- and Ca2+-ATPases have been characterized at different levels

of detail in BSF of T. brucei. For example, activities of both a V-H+-ATPase and a V-H+-PPase

have been shown in acidocalcisomes [122,123], while V-H+-ATPase activities were also

detected in the lysosome and endosomes, linking these pumps with endocytic processes [124].

In contrast, no evidence of a functional intracellular P-type H+-ATPase activity has been

found in T. brucei [125]. However, despite their detailed description, we did not find enough

data to estimate the costs related to these latter processes. Regarding Ca2+ pumps, a high-affin-

ity (Ca2+-Mg2+)-ATPase regulated by calmodulin was demonstrated in the plasma membrane

of BSF trypanosomes, with a Vmax for ATP hydrolysis (in the presence of calmodulin) of 6.36

nmol/min x mg protein [126]. A continuous activity of this pump at maximum velocity during

the entire BSF cell cycle (5.3 h, or 318 min) would demand 2,022 nmol ATP (~1.22 x 1018 ATP

molecules). As 1 mg of proteins corresponds to 108 BSF cells, the maximum ATP demand by

this pump per cell during an entire cell cycle is 1.22 x 1010 ATP molecules. However, this value

is most likely an overestimation, because it is based on the assumption that this pump works at

maximum velocity during the duration of the cell cycle. In addition, proteins with homology

to PMCA-type Ca2+-ATPases were identified and reported in T. brucei as TbPMC1 and

TbPMC2 [127]. In particular, TbPMC1 has been located in the plasma membrane of BSF.

However, no information is available regarding its ATP consumption. Even so, we suggest that

compared with the values estimated by Luo et al. [127], the ATP expenditure for Ca2+ efflux

could be negligible when compared to the total cost of transport processes in the parasite.

Table 10. ATP requirement for the formation of microbial cells from glucose and inorganic salts and the influence of the addition of amino acids (AA) or/and

nucleic acid bases (bases). (Modified from [14]).

Ion/Metabolite ATP required (moles x 10−4 / g cells) % of the total ATP required (moles x 10−4 / g cells) % of the total

AA AA AA + bases AA + bases

NH4
+ 10.4 3.0 0.0 0.0

Amino acids 47.9 13.7 47.9 15.3

Phosphate ions 7.7 2.2 7.7 2.5

Total 66 18.9 55.6 17.7

https://doi.org/10.1371/journal.ppat.1011522.t010
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Based on these calculations, the estimated ATP costs for transport of solutes across the plasma

membrane were estimated as being ~1.3 x 1011 ATP/ cell cycle x cell.

The cost of motility

Motility due to beating of its single flagellum serves the trypanosome to navigate the environ-

ment. But for BSF T. brucei it has the important additional role of counteracting the defense of

the infected host, as it enables clearance of host antibodies attached to VSGs by causing these

surface coat proteins to be recycled [128]. As a curiosity, the name Trypanosoma is derived

from the Greek word describing the peculiar movement of these cells (auger cells) [129]. Try-

panosomes are vigorous swimmers, and the swimming velocity depends on the microenviron-

ment’s viscosity. They can reach a speed of at least 20 μm/s, allowing the hydrodynamic

removal of attached host antibodies [130]. The frequency of flagellar beating has been mea-

sured as 15–20 Hz [131]. Considering that the resultant energy during the breakdown of 1

ATP molecule is ~7.5 x 10−20 J and that the power generated by a flagellar beating is ~4 x 10−17

J, one flagellar beating results from the consumption of at least 532 ATP molecules. If we

assume that the ATP hydrolysis for flagellar motility is constant, based on the speed mainte-

nance (output) and on the fact that trypanosomes are non-stopping engines, the total ATP

consumed can be calculated as:

ATPf ¼ n x NATP x T

where ATPf is the amount of ATP consumed by the flagellar movement during the entire BSF

cell cycle, ν is the frequency of flagellar beating (the average value of 17.5 Hz was taken for this

calculation), NATP is the number of ATP molecules consumed per flagellar beating and T is

the duration of the cell cycle in seconds. This calculation points out that permanent flagellar

beating consumes 2.3 x 108 ATP molecules per cell per cell cycle. This calculation does not yet

take into account the specific characteristics of the internal flagellar machinery, which is

responsible for transducing the energy obtained from ATP breakdown into flagellar beating.

Inside a flagellum, the axoneme is constituted by 96 nm dynein repeats, forming two central

double microtubules surrounded by nine other pairs of microtubules (9(2) + 2) [132]. The

basic dynein composition of each repeat is five outer arms (two-headed) and seven single-

headed inner arms of dyneins [133]. Each dynein head has an AAA-ATPase domain [134], so

in total, the axoneme has 17 ATPase domains at each 96 nm dynein repeat. As there are 2 x 9

microtubules in a flagellum, there are a total of 306 ATPase domains/repeat. The average

length of a BSF flagellum is 25.3 μm [133], so dividing it by 96 nm, it is possible to calculate

that a T. brucei flagellum has approximately 264 repeats with ~40,392 dynein molecules. How-

ever, not all components of the flagellar machinery work at the same time. In order to generate

a planar waveform, only some of the doublets are activated simultaneously, and the activity

should switch periodically between two nearly-opposed doublets [135]. Considering that each

beat is nearly planar in T. brucei BSF, instead of more than 40,392 dyneins operating at the

same time, there will be those corresponding to 2 out of 9 pairs working simultaneously, in

other words, 8,976 active dynein molecules per beat. To estimate the ATP consumption based

on the dynein number, it must be considered that every single conformational change in

dynein is driven by the formation of an ATP-dynein complex, which is before the power

stroke. The power stroke is the motor force that drives the sliding displacement on the longitu-

dinal axis of an axoneme [136]. The product of axonemal diameter and the shear angle

(defined as the interior angle between the symmetry axis of the dynein head and the line tan-

gent to the axoneme, immediately after the first bend), gives the total sliding displacement

along an axoneme between two neighboring doublets [135,137]. For Chlamydomonas, it was
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established that the shear angle is ~1 rad. The diameter of an axoneme is ~150 nm [138–140].

The dynein sliding displacement has been calculated as being 8 nm [136]. As a result, we have

the ratio between the sliding displacement and the dynein power stroke, which results in 19

steps per flagellar beat. Assuming that each dynein takes 1 ATP per step, 8,976 of the dynein

molecules being active at a given time, and that a flagellar beat needs 19 dynein steps along the

microtubules, the parasite has to invest ~1.7 x 105 ATP molecules per flagellar beat. As previ-

ously stated, the average frequency for flagellar beating is 17.5 Hz. Remaking the calculation

above with data from the mechanistic analysis of the flagellar machinery (see equation above)

the ATP demand by the whole flagellar machinery would rise to 5.7 x 1010 molecules per cell

cycle.

ATP cost of activation and recruitment of vesicles

Endocytosis is a very important biological process in T. brucei, to capture specific compounds

from the environment, such as low-density lipoprotein containing lipids and transferrin pro-

viding iron by the receptor-mediated process and serum proteins like albumin complexed

with various molecules by fluid-phase endocytosis [90,141,142]. However, the mechanisms

involved in this process have still not been fully described in this parasite [143]. The process is

also crucial for the above-mentioned antibody clearance and VSG recycling which allows the

trypanosome to escape from the host immune attack [144]. BSF possesses at least 107 VSG

molecules per cell and recycles the entire VSG coat each 12 min [128]. To recycle VSGs, T. bru-
cei depends on both endocytic and exocytic pathways. The VSGs are returned to the surface

after passing through endosomes where any attached antibodies are removed and routed to

the lysosomes for degradation. As every endocytic event in T. brucei, it depends on clathrin.

For that, the cell produces 6–7 clathrin-coated vesicles bearing VSGs per second [145]. For our

calculation, we used the minimum value of 6 clathrin-coated vesicles bearing VSGs per second,

which implies that these cells would be internalizing 21,600 vesicles per hour. Vesicle forma-

tion for VSG recycling is a Rab11-dependent process [146]. Considering that the cell produces

21,600 vesicles per hour and at least 1 Rab assembly is necessary for each vesicle, the energy

cost for the activation and recruitment of vesicles based on the assembly of Rab proteins (that

use 1 GTP/Rab) results in a cost of 1.14 x 105 GTP molecules per cell cycle. In this calculation,

we are not taking into account some other processes that could impact endocytosis-related

ATP consumption in T. brucei. Even though the endocytosis process is quite well understood

in other organisms such as several opisthokonts [147], we are not able to estimate other ATP

expenditures that can contribute to the total cost of endocytosis in T. brucei due to the low

conservation of components for this machinery. For example, during the formation of the vesi-

cles, several proteins are recruited to the site of membrane bending, and an actin bridge is

built up [148]. The assembly of these proteins and the actin polymerization surrounding the

vesicle involves ATP and GTP hydrolysis and/or cycling. For cargo translocation along tubulin

microtubules, cycling of GTP is also necessary [149]. Clathrin and adaptor protein release also

depends on ATPase activity [150]. Therefore, the minimal amount of ATP consumed for this

process, considering a rate of conversion of 1 ATP per GTP is 1.14 x 105 ATP molecules per

cell cycle, but the actual number is probably higher.

How much ATP hydrolysis is required to maintain the mitochondrial inner

membrane potential (ΔCm)?

The single mitochondrion of BSF T. brucei displays marked differences when compared to

those of every other eukaryote described so far, and even when compared to that of other life

cycle stages of the parasite, such as the procyclic form. The most remarkable differences are: i)
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the absence of OxPhos; ii) a marked reduction in the expression levels of proton pumping

respiratory enzyme complexes; and iii) a drastic reduction in the expression of TCA cycle

enzymes [17]. It is worth mentioning that it could be reasonably assumed that in BSF trypano-

somes the mitochondrial proton leakage is much smaller than that observed in other life stages

[17], since the inner mitochondrial membrane does not form cristae, and therefore, it has a

considerably smaller surface [151]. As the mitochondrial integrity and biogenesis depends on

the mitochondrial inner membrane potential (ΔCm) [19,152], BSF compensates for the lack of

functional respiratory proton pumps by using the F1Fo-ATP-synthase in reverse mode [20]. In

this way, ΔCm is built up and maintained by pumping protons into the intermembrane space

by hydrolysis of ATP [152]. Additionally, the cells require intramitochondrial ATP to prevent

inhibition of the trypanosome alternative oxidase, which is needed to use oxygen as a terminal

electron acceptor [153]. It must be noted that, the ATP required in the mitochondrial matrix

to keep both systems working does not necessarily depend on ATP import via the ATP/ADP

translocator [153]. In the absence of this transporter’s activity, it can also rely on an intramito-

chondrial substrate-level phosphorylation system, comprising the acetate:succinate CoA trans-

ferase and the succinyl-CoA synthetase (ASCT/SCS) cycle [154]. This is reminiscent of the

substrate-level phosphorylation and reversal of the ATP-synthase shown in other systems such

as the isolated liver and heart rabbit mitochondria [155]. Such a system has been demonstrated

as being functional in BSF in terms of intramitochondrial ATP production [156]. We hypothe-

size that this mitochondrial substrate-level phosphorylation system is the main source of intra-

mitochondrial ATP, and it can provide sufficient ATP to maintain the ΔCm [22,157], despite

its relatively low capacity for producing only small quantities of ATP [10]. In terms of energy

expenditure, the mitochondrial substrate-level phosphorylation could then be considered

energetically neutral since all ATP produced by the ASCT/SCS cycle is devoted to the mainte-

nance of the mitochondrial membrane potential generated by the F1Fo-ATP synthase.

Theoretical analysis of the ATP requirements for biomass formation and

maintenance of BSF

The quantity of moles of ATP necessary to produce a gram of biomass (theoretical YATP) is an

estimator of the ATP yield [158]. Several methods have been proposed to calculate its value.

Here, we will assume that the total ATP produced during a cell cycle is used for maintenance

and duplication, therefore we estimate it as:

YATP ¼ m=NTotal
ATP

where m is the dry weight of a single cell and NTotal
ATP is the total quantity of ATP used to main-

tain and duplicate a cell. The BSF dry weight is not available from the literature. Therefore, we

estimated it from the value available for E. coli. Considering that the dry weight of an E. coli
cell is 0.3 pg [159] and that its volume is 1.3 μm3 [83], and assuming that the BSF of T. brucei
with its volume of 45 μm3 has the same density as the bacterium, we calculated a dry weight of

approximately 10 pg/cell. Using this value and the total ATP produced during a cell cycle (6 x

1011 ATP molecules/cell which equals 0.99 x 10−12 moles), and assuming that the total ATP

produced is consumed, we obtained an YATP of 10.1 (g biomass)/mole ATP. Another estimator

of the efficiency of ATP used for biomass production (the ATP required for biomass duplica-

tion without considering the ATP required for maintenance) is the theoretical Ymax
ATP , which can

be calculated as:

Ymax
ATP ¼ m=Nbiomass

ATP

where Nbiomass
ATP is the quantity of ATP used for duplicating the biomass component of a cell
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[114], in our calculations 2.1 x 1011 ATP molecules or 0.35 pmoles ATP per cell. For the theo-

retical Ymax
ATP we then obtained a value of 28.6 (g biomass)/mole ATP.

Discussion

Long-slender bloodstream forms of T. brucei have a unique configuration in terms of the bioe-

nergetic pathways responsible for ATP production. Despite having a mitochondrion, these

cells rely almost exclusively on glycolysis for ATP production, and they are the only case in

nature (to the best of our knowledge) of mitochondriated cells in which the mitochondrion,

under the conditions studied thus far, does not contribute to the cell’s net ATP production.

Even more, their ATP synthase hydrolyzes ATP to maintain the mitochondrial inner mem-

brane potential [18,19,160]. Based on data available in the literature on the glycolytic flux dur-

ing proliferation [12], we calculated with some precision the total amount of ATP produced

during a BSF cell cycle, in other words, we calculated the ATP necessary for maintaining alive

a BSF trypanosome and building a new one (~6 x 1011 molecules) when cultured in the rich

HMI-9 medium.

When our numbers are compared with corresponding ones for other cells (Table 11), it

becomes clear that, as expected, the ATP produced per cell during a cell cycle is much lower

than that for other eukaryotes (mammalian cells), but much higher than that obtained for pro-

karyotic cells.

In order to expand our comparisons, we estimated the theoretical YATP and Ymax
ATP of the T.

brucei BSF, parameters that have previously been calculated for several other cells (Table 12).

The obtained YATP is 10.1 (g biomass)/mole ATP, higher than the value for Saccharomyces

Table 11. ATP produced during the cell cycle in different cells.

Organism Total Reference

Mycoplasma pneumoniae 4.3 x 109 [161]

Escherichia coli 5.9–12 x 109 [13,162]

BSF Trypanosoma brucei 5.94 x 1011 This work

Mammalian tissue culture cell iBMK 1.2 x 1013 [163]

Human fibroblast 4.5 x 1013 [1]

https://doi.org/10.1371/journal.ppat.1011522.t011

Table 12. Theoretical YATP and Ymax
ATP for various cells.

Organism YATP (g biomass/mol ATP) YATP
max (g biomass/mol ATP) Reference

Paracoccus denitrificans ND 3.1–3.5a [166]

Escherichia coli ND 16.71 [167]

Candida utilis ND 20.8b [164]

Saccharomyces cerevisiae 15.8c 28.1b [164,168]

BSF Trypanosoma brucei 10.1 28.6 This work

Sulfolobus solfataricus ND 40.01 [169]

Corynebacterium glutamicum 34.5d* ND [170]

a autotrophic growth on formate
b aerobic glucose-limited chemostat growth
c anaerobic glucose-limited chemostat growth
d exponential growth on glucose

* value corrected for the units used in this work
1 values derived from Growth Associated Maintenance (GAM) as follows: Ymax

ATP = 1/GAM

https://doi.org/10.1371/journal.ppat.1011522.t012
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cerevisiae (15.8 (g biomass)/mole ATP) [164]. Once knowing how much ATP is available for

keeping alive and replicate a cell, it was interesting to analyze how much of this valuable

resource is used for critical biological processes (Fig 1, S5 Table). The cost of DNA replication

depends, in addition to the genome size, on the nucleotide composition and the specific ATP

cost of their biosynthesis. Whilst in other organisms the average cost spent on dNTP biosyn-

thesis from glucose is 50 ATP molecules [14], in T. brucei BSF it is only 10 ATP molecules.

This is due to the fact that this parasite does not synthesize purines de novo but uses the salvage

pathway, and synthesizes pyrimidines from externally supplied glutamine and aspartate.

According to our calculations, 90% of the costs of the total DNA duplication is the cost of rep-

licating the nuclear genome, while the remaining 10% corresponds to the cost of replicating

the kDNA. Differently from replication, transcription costs are strongly influenced by other

factors. Large polycistronic units are often assumed as costly because they involve the tran-

scription of “useless” DNA (for example intergenic sequences, developmentally regulated

genes, pseudogenes, etc.) that must be further eliminated during the trans-splicing processing

for producing the mature mRNA, or by post-transcriptional degradation. However, according

to our calculations, a significant part of the cost of transcription is due to the biosynthesis of

rNTPs. As rNTP used in transcribing the intergenic regions can be recycled they would not

constitute an extra cost [14]. So, the only extra cost that can be assumed is that of their poly-

merization (equivalent to 2 ATP/base). Considering this, the extra cost of polycistronic tran-

scription is ~30% of the total transcriptional cost or 0.3% of the total budget for maintaining

and building a new cell. There are not enough data to calculate in detail the total extra cost of

transcribing coding sequences that must be further degraded in order to control gene expres-

sion. However, some estimations can be made based on the fact that only 47 out of 9,694

(~0.5%) genes are considered as not being expressed in BSF, and 772 out of 9,694 (8%) genes

are considered down-regulated in BSF when compared to procyclic forms [165]. Considering

the extreme case in which both gene populations are completely degraded after polymeriza-

tion, the spurious coding RNA polymerization corresponds to 8.5% of the total coding RNAs.

As we considered 2 ATP molecules being spent per base polymerized, an average transcript

length of 2,800 nt, and an average RNA synthesis of 1.2 RNAs/h (estimated in [51]) the esti-

mated ATP expenditure is ~2.9 x 107 ATP molecules (0.5% of the total ATP expenditure for

the completion of a cell cycle) (Fig 1, S5 Table). These values can be compared with those that

Fig 1. Summary of the most energetically costly biological processes in bloodstream form T. brucei. For underlying values see text

and S5 Table.

https://doi.org/10.1371/journal.ppat.1011522.g001
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can be estimated from a scenario of having transcriptional regulation for each protein-encod-

ing gene. Considering that BSF expresses 8,875 genes this implies the formation of at least an

equivalent number of transcriptional OCs, instead of the reduced number of OCs necessary in

the polycistronic transcription system. Based on an individual cost of 20 ATP molecules/OC,

the minimal cost of individual transcriptional initiation would be 1.7 x 105 ATPs. We could as

well estimate a maximum cost, by considering that each individual mRNA molecule requires

ATP for formation of 1 OC. In this case, for the synthesis of the 37,988 mRNA molecules (N +

Nr) the ATP cost would be 7.6 x 105 molecules. Thus, in both extreme hypothetical cases, a

much higher value is obtained when transcriptional initiation is based on individual genes

compared to the (0.8–1.5) x 104 ATPs required for OCs in the polycistronic transcription.

Regardless of the case, both costs seem to be largely negligible concerning the total transcrip-

tion cost and therefore from a purely energetic point of view the evolutionary advantage of

individual transcription seems to be impactless.

As reported for several cell types, the synthesis and maintenance of the proteome is the

most expensive process during a cell cycle (Tables S5 and 13). Despite the fact that BSF try-

panosomes take up most of the amino acids from the medium instead of synthesizing them de
novo, they are, according to our calculations, not an exception with regard to the expensiveness

of proteome production and maintenance. This is explainable because the formation of pep-

tide bonds is one of the costliest biochemical reactions in a cell (4 ATP molecules per bond).

Therefore, taken together, translation and protein turnover demand 58.6% of the ATP budget

(Fig 1). An interesting point emerges when analysing the cost of synthesizing the amino acids

that compose the proteome in comparison with the energy required to import them from the

environment. According to Mahmoudabadi, the average cost of synthesizing 1 amino acid is 2

ATPs [84]. We are assuming that during proteome turnover all amino acids are recycled.

Thus, cost of synthesizing will only be considered for amino acids to be used for building a

new proteome (not for maintenance involving turnover). We estimated that the synthesis of a

new proteome demands 4.7 x 1010 amino acids. Therefore, the cost of synthesizing all amino

acids would be 9.4 x 1010 ATPs. Herein we assumed that the total cost of uptake of amino acids

Table 13. Comparison of ATP demand in different cell types.

Process ATP demand (%)

BSF T. brucei (This work) Bacteria [13,171]a Mammalian cells [172]

DNA replication 0.3 1.8 25c

Transcription 1.1 11.8b

Proteome doubling 33.3 59.3d 34d

Protein turnover 26.3

Sugar nucleotides synthesis 0.2 ND ND

Lipids and sterols synthesis 2 0.3 ND

polyP synthesis and maintenance 0 ND ND

Transport (aa, K+, Pi-) 21.8 18.1 33e

Flagellar motility 9.5 ND ND

Activation/recruitment of vesicles 0 ND ND

a Bacteria grown in the presence of glucose, inorganic salts and amino acids
b Sum of RNA synthesis and turnover
c Sum of DNA/RNA synthesis
d Reference refers only to protein synthesis
e Sum of Na+/K+ and Ca2+ ATPases

ND, not determined

https://doi.org/10.1371/journal.ppat.1011522.t013
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and ions was as estimated by Stouthamer for E. coli (between 13.7 and 15.3% of the total cell

ATP budget). Taking the intermediate value of 14.5%, this would result in an ATP cost of 8.6 x

1010, surprisingly very close to the cost estimated for amino acid biosynthesis. It is generally

assumed that taking metabolites up is energetically more efficient than synthesizing them, and

this efficiency would contribute to the parasitic lifestyle. Our calculations show that, in princi-

ple, for amino acids, the difference in T. brucei is very minor, impacting the total budget by

less than 1.5%. These calculations do not include the cost of the synthesis of sugar nucleotides

used for the glycosylation of surface proteins (mostly VSGs). Even being part of the total cost

of building an entirely new proteome, it represents a negligible 0.5% of the total ATP

demanded by this process.

Regarding the cost of synthesizing the lipidome, it is interesting to note that BSF trypano-

somes contain most of the lipids commonly present in eukaryotic cells [173]. Although BSF T.

brucei can acquire most of the lipids from the blood of the mammalian host [141], they have

also the ability to rely completely on de novo biosynthesis of phospholipids and glycolipids to

fulfill the need for some specific lipids [174]. For example, the VSG synthesis and anchoring in

the plasma membrane requires high quantities of myristate, which is at low abundance in the

host serum [175]. As most of the lipids biosynthesis pathways have been characterized in detail

for T. brucei [94–97], we could estimate that the synthesis of the complete repertoire of lipids

and sterols would consume 2% of the total ATP budget (Table 13, Fig 1). However, this value

is likely to be an overestimation, since data indicate a balance between transport and biosyn-

thesis is responsible for the maintenance of the lipids content in BSF T. brucei [89].

PolyPs are ubiquitously present among bacteria, protists and mammalian cells, and in uni-

cellular eukaryotes have been proposed to have a role in different biological processes such as

adaptation to stress, osmoregulation and metabolism regulation. In prokaryotes, they have

been proposed as storage of HEBs. Indeed, their hydrolysis involves the possibility of being

coupled to phosphorylating ADP to ATP. However, based on our calculations, a role for pol-

yPs as an energy reservoir seems unlikely: the total energy stored in the form of polyPs is less

than 0.005% of the total ATP produced during a cell cycle (S6 Table) suggesting that their use

as an energy reserve could only be restricted to very specific processes.

Regarding the costs of critical processes for survival and replication of BSF not related to

the maintenance and duplication of biomass, we estimated the costs of motility, endo/exocytic

vesicles formation, and the maintenance of the mitochondrial inner-membrane potential

(which in the case of BSF is exclusively dependent on ATP hydrolysis). Motility occurs as a

non-stop process during the entire cell cycle and is associated with the activity of the flagellar

machinery. Two calculations were made on the basis of data available in the literature: i. based

on the energy dissipated by the flagellar beating; and ii. based on the ATP demand of the flagel-

lar structure, relying on the information on the composition and organization of the molecular

motors responsible for the flagellar movement. Both calculations resulted in values differing

by two orders of magnitude. It must be noted that both values refer to different phenomena

since in the first case we estimated the energy output and in the second case the energy

demand of the entire flagellar machinery. Therefore, if both values are correct, the efficiency of

the machinery for flagellar beating can be calculated as the percentual ratio between the energy

output and input, in this case approximately 0.5%. In this sense, it should be pointed out that

Stellamanns et al. (2014) [131] found a discrepancy between the power necessary to move the

BSF body in relation to the power actually produced by the flagellar movement in the range of

one order of magnitude [131]. Whatever the case, the low efficiency of this process in terms of

trypanosome motility is in agreement with the fact that flagellar beating is necessary for other

processes not necessarily related to parasite movement, such as VSG recycling for antibody

clearance [128,131]. To estimate the total percentage of the budget used for flagellar beating,
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we considered the highest value obtained, which resulted in the consumption of 9.6% of ATP

produced (Fig 1). Regarding the VSG recycling and antibody clearance, they require, in addi-

tion to flagellar movement, the formation of vesicles for trafficking the surface proteins

through the cell interior. Due to the fact that the ATP (or in some cases GTP) requirements of

these processes are largely unknown, we did not consider the cost of formation of the actin

bridge, the cargo translocation along tubulin microtubules, and the clathrin and adaptor pro-

tein release [150]. Therefore, the ATP cost in our calculation is probably underestimated.

However, as it represents less than approximately 0.0001%, the whole process is likely to be

energetically undemanding.

Since BSF T. brucei is entirely dependent on glycolysis for its ATP supply, it is considered as

an attractive drug target against sleeping sickness. Whether the quantitative analysis of the ATP

consumption as presented in this paper can provide insight into which processes are most vul-

nerable for ATP depletion and responsible for killing the parasites is discussed in the S2 Text.

In this paper, we reported our calculation of the energy budget for maintaining alive and

building up a BSF cell of T. brucei during its cell cycle based on the cellular and metabolic pro-

cesses known to occur in these trypanosomes and data available about the ATP costs of the

processes. Where relevant data for T. brucei were lacking, we estimated the costs based on data

known for other organisms. Of course, the outcome of this endeavour is an approximation; for

several processes in the trypanosomes, or even in general in cells, quantitative information is

not available and/or how much ATP is required to sustain them is unknown (such processes

are listed in the S3 Text). Nonetheless, the approximation seems realistic; all known major pro-

cesses have been considered. Our analysis provided results that are amenable for experimental

interrogation, while it also revealed where more research is required, including statistical anal-

ysis of the results, to allow an even more complete understanding of the energy expenditure of

trypanosomes. Moreover, it will be interesting to expand this study to the analysis of other pro-

liferative life-cycle stages of T. brucei, or those of related parasitic (e.g., the intracellular T. cruzi
amastigote) and free-living organisms for which sufficient data are or may become available in

the foreseeable future.

Materials and methods

Databases

Methods. (1) Our analysis is restricted to long-slender proliferating forms of BSF T. brucei.
For their energy supply, these trypanosomes are entirely dependent on glucose uptake from the

blood. Almost all glucose is converted to pyruvate, which is excreted, resulting in a yield of 2

ATP/glucose consumed. We have based our calculations on the quantitative analysis of the glu-

cose consumption rate in exponentially growing trypanosomes of T. brucei strain Lister 427

with a doubling time of 5.3 h, in HMI-9 medium (composition described in S1 Table), as

described by [12]. All calculations for rates of ATP consumption in different processes and

activities of trypanosomes as described in the literature have been scaled to a cell cycle of 5.3 h.

(2) ATP consumption for biosynthetic processes has been calculated taking into account

the (macro)molecular content (proteins, nucleic acids, lipids) of the trypanosomes, the known

precursors which are either synthesized (according to available datasets in Table 14 and the

reactions described in S2, S3 and S4 Tables) or taken up from the host environment, the rate

of the processes and the turnover of the (macro)molecules. Also, the energy of uptake pro-

cesses was considered.

(3) Other energy costs that were estimated involved: biogenesis of subcellular structures,

endocytosis and recycling of the VSG surface coat, motility, protein degradation, and genera-

tion and maintenance of transmembrane electrochemical ion gradients.
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Detailed costs considered for each biological process. Genome duplication: synthesis of

deoxyribonucleotides (S2 Table), DNA unwinding, synthesis and ligation of Okasaki frag-

ments and sliding clamp assembly.

Transcription: synthesis and polymerization of ribonucleotides (S3 Table), transcript length

and half-life (rRNA, VSG, mRNA and SL RNA), nucleosome displacement, splicing.

Proteome maintenance: amino acid polymerization, protein half-life and degradation

Membrane doubling: synthesis of phospholipids and ergosterol

Synthesis of sugar nucleotides: average glucidic composition

Synthesis of polyphosphates: synthesis (with coupled transmembrane passage) of short-

chain and long-chain polyP.

Transmembrane transport: transport of ions and amino acids (see S6 and S7 Tables and

S3 Text))

Cell motility: flagellar beating, dynein sliding displacement and power stroke

Activation and recruitment of vesicles: rate of vesicle formation, Rab assembly

Maintenance of mitochondrial membrane potential: Fo-ATPase activity

Information about some of the processes listed here is very complete. However, for some

other processes in the trypanosome major gaps exists in our knowledge, while for still other

ones very little information is available. Where possible, quantitative information was taken

from other organisms, or assumptions have been made. Where this has been done, it is men-

tioned in the text and tables.

Supporting information

S1 Table. Composition of HMI-9 and CMM.

(PDF)

S2 Table. Reactions for synthesis of dNTPs.

(PDF)

S3 Table. Reactions for synthesis of rNTPs.

(PDF)

S4 Table. Reactions for synthesis of precursors of dNTPs and rNTPs.

(PDF)

S5 Table. Summary of ATP production and expenditure in BSF trypanosomes.

(PDF)

S6 Table. Amino acids transport and metabolic pathways in T. brucei.
(PDF)

S7 Table. Calculations of synthesis flux for amino acids that can be produced from nutri-

ents in CMM medium and their ATP flux.

(PDF)

S1 Text. Biosynthesis of amino acids.

(PDF)

Table 14. Databases used in this work.

Database Web address Reference

TriTrypDB https://tritrypdb.org/tritrypdb/app [176]

Bionumbers https://bionumbers.hms.harvard.edu/search.aspx [177]

https://doi.org/10.1371/journal.ppat.1011522.t014
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S2 Text. What kills the BSF T. brucei?
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S3 Text. Processes for which ATP costs could not be estimated due to lack of quantitative

data.

(PDF)
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chondrion during the life cycle of Trypanosoma brucei. Journal of Eukaryotic Microbiology. 2021; 68.

https://doi.org/10.1111/jeu.12846 PMID: 33624359

152. Brown S V., Hosking P, Li J, Williams N. ATP synthase is responsible for maintaining mitochondrial

membrane potential in bloodstream form Trypanosoma brucei. Eukaryot Cell. 2006; 5: 45–53. https://

doi.org/10.1128/EC.5.1.45–53.2006

153. Peña-Diaz P, Pelosi L, Ebikeme C, Colasante C, Gao F, Bringaud F, et al. Functional characterization

of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human

pathogen Trypanosoma brucei. Journal of Biological Chemistry. 2012; 287: 41861–41874. https://doi.

org/10.1074/jbc.M112.404699 PMID: 23074217

154. Van Hellemond JJ, Opperdoes FR, Tielens AGM. Trypanosomatidae produce acetate via a mitochon-

drial acetate:succinate CoA transferase. Proceedings of the National Academy of Sciences. 1998; 95:

3036–3041. https://doi.org/10.1073/pnas.95.6.3036 PMID: 9501211

155. Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Töröcsik B, Doczi J, et al. Forward operation of
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