161 research outputs found

    Comparative high-resolution chemostratigraphy of the Bonarelli Level from the reference Bottaccione section (Umbria-Marche Apennines) and from an equivalent section in NW Sicily: Consistent and contrasting responses to the OAE2.

    Get PDF
    The Bonarelli Level (BL) from the upper Cenomanian portion of the reference Bottaccione section (central Italy) is characterized by the presence of black shales containing high TOC concentrations (up to 17%) and amounts of CaCO3 near to zero. In the absence of carbonate and, consequently, of relative carbon- and oxygen- isotopic data, the elemental geochemistry revealed to be a very useful tool to obtain information about the palaeoclimatic and palaeoceanographic evolution of the Tethys Ocean during the OAE2. Based on several geochemical proxies (Rb, V, Ni, Cr, Si, Ba), the BL is interpreted as a high-productivity event driven by increasingly warm and humid climatic conditions promoting an accelerated hydrological cycle. The enrichment factors of peculiar trace metals (Zn, Cd, Pb, Sb, Mo, U) provide further insight about the H2S activity at the seafloor during the organic-rich sediment deposition and permitted us to evaluate the use of Ba as palaeoproductivity tracer in conditions of high rate of sulphate reduction. By comparing geochemical records from the reference Bottaccione section (central Italy) with those previously obtained for the coeval Calabianca section (northwestern Sicily), different degrees of oceanic anoxia were delineated and ascribed to different abundance and type (degradable or refractory) of organic matter, which are limiting factors in the bacterial sulphate reduction reactions and in subsequent euxinic conditions at seafloor in the Tethys realm. Based on a ciclostratigraphic approach, consistent fluctuations at 100 kyr scale in the chemostratigraphic signals from the two sections are inferred to be expression of a strong orbital-climatic forcing driving changes in the oceanic environment during the BL deposition

    Meio- and macrofauna in the marine area of the Monte St. Bartolo Natural Park (Central Adriatic Sea, Italy)

    Get PDF
    This paper presents an integrated investigation of benthic foraminiferal, meiofaunal and macrofaunal assemblages that was carried out in front of the marine area of the Monte St. Bartolo Regional Natural Park (Adriatic Sea, Italy). Although this area is not yet subject to conservation plans, an overall good quality status of its benthic assemblages was documented. In particular, the assemblages were somewhat diversified and generally minimally to moderately affected by anthropogenic activities. Both the foraminifera and macrofauna seemed to be primarily influenced by variations in the habitat's features, whereas significant changes in the meiofaunal assemblage were related more to trophic supply fluctuations. These data suggest the potential vulnerability of this area and highlight the importance of defining and applying an appropriate integrated zone management plan

    Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event

    Get PDF
    The Faraoni Level is a short-lived oxygen-deficient event that took place during the latest Hauterivian. In order to improve our understanding of the palaeoenvironmental conditions that occurred during this event, we have analysed the contents of several redox-sensitive trace elements (U, V, Mo, As, Co, Cd, Cu, Zn, Ni, Pb, Cr) from bulk limestone samples of late Hauterivian-early Barremian age from three reference sections. U, V, Mo and As show consistent and significant enrichments during the Faraoni event whereas the other redox-sensitive trace elements analysed here are not systematically enriched. In order to explain this discrepant behaviour, we propose that the Faraoni Level was deposited during a period of anoxic conditions near the sediment-water interface. The distinctive peaks in U, V, Mo and As contents are traceable throughout the three studied sections and represent a good correlation tool which helps to identify the Faraoni Level and its equivalents in the western Tethyan realm and outside of the Tethys. For example, a peak in U contents in upper Hauterivian sediments of the northwestern Pacific realm (ODP leg 185, site 1149) may well be an expression of the Faraoni event in this particular basi

    A Late Cretaceous true polar wander oscillation

    Get PDF
    True polar wander (TPW), or planetary reorientation, is well documented for other planets and moons and for Earth at present day with satellites, but testing its prevalence in Earth’s past is complicated by simultaneous motions due to plate tectonics. Debate has surrounded the existence of Late Cretaceous TPW ca. 84 million years ago (Ma). Classic palaeomagnetic data from the Scaglia Rossa limestone of Italy are the primary argument against the existence of ca. 84 Ma TPW. Here we present a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy that provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years

    Umbria-Marche Basin, Central Italy: A Reference Section for the Aptian-Albian Interval at Low Latitudes

    Get PDF
    Within the Cretaceous Period, the Aptian-Albian interval (125–99.6 Ma, Ogg et al., 2008) was a critical time on a global scale. This is evident from 1) changes in the nature of the ocean-climate system brought about by increased ocean crust production coupled with active midplate and plate margin volcanism in a shifting paleogeography (Skelton et al., 2003); 2) cyclic deposition and preservation of common “black shales”, some of them termed Oceanic Anoxic Events(OAE1a to OAE1d) (Schlanger and Jenkyns, 1976; Arthur et al., 1990); 3) periodic changes in redox conditions at the ocean bottom (Oceanic Red Beds, ORBs) (Wang et al., 2009); and 4) rapid biotic radiations and turnovers (Leckie et al., 2002). The Aptian-Albian time is also of interest for one of the most noteworthy geomagnetic events, namely the post-M0r “Cretaceous Quiet Zone”. This long and constant normal polarity superchron without any convincing true reversal to date (Satolli et al., 2008) precludes usage of reversals magnetostratigraphy from the Aptian through the Santonian. The Poggio le Guaine core was designed to provide a high-resolution age model and a high-resolution relative magnetic paleointensity reference curve for the Aptian-Albian interval of the long normal Cretaceous superchron; it was also designed to understand the causal linkages among geological, biogeochemical, oceanographic and climatic eventsas well as their consequences. The core was drilled at Poggio le Guaine, where the most continuous, complete, and best preserved Aptian-Albian succession is exposed throughout the Umbria-Marche Basin (UMB) of the northern Apennines of central Italy (Fig. 1). It represents a continuous record of fossiliferous pelagic rocks extending from the Albian-Cenomanian boundary down to the uppermost Barremian (99.6–126 Ma). In this progress report we present the first preliminary findings of this ongoing project
    corecore