298 research outputs found

    Dilated Cardiomyopathy: Phosphorus 31 MR Spectroscopy at 7 T

    Get PDF
    Purpose To test whether the increased signal-to-noise ratio of phosphorus 31 (31P) magnetic resonance (MR) spectroscopy at 7 T improves precision in cardiac metabolite quantification in patients with dilated cardiomyopathy (DCM) compared with that at 3 T. Materials and Methods Ethical approval was obtained, and participants provided written informe consent. In a prospective study, 31P MR spectroscopy was performed at 3 T and 7 T in 25 patients with DCM. Ten healthy matched control subjects underwent 31P MR spectroscopy at 7 T. Paired Student t tests were performed to compare results between the 3-T and 7-T studies. Results The phosphocreatine (PCr) signal-to-noise ratio increased 2.5 times at 7 T compared with that at 3 T. The PCr to adenosine triphosphate (ATP) concentration ratio (PCr/ATP) was similar at both field strengths (mean ± standard deviation, 1.48 ± 0.44 at 3 T vs 1.54 ± 0.39 at 7 T, P = .49), as expected. The Cramér-Rao lower bounds in PCr concentration (a measure of uncertainty in the measured ratio) were 45% lower at 7 T than at 3 T, reflecting the higher quality of 7-T 31P spectra. Patients with dilated cardioyopathy had a significantly lower PCr/ATP than did healthy control subjects at 7 T (1.54 ± 0.39 vs 1.95 ± 0.25, P = .005), which is consistent with previous findings. Conclusion 7-T cardiac 31P MR spectroscopy is feasible in patients with DCM and gives higher signal-to-noise ratios and more precise quantification of the PCr/ATP than that at 3 T. PCr/ATP was significantly lower in patients with DCM than in control subjects at 7 T, which is consistent with previous findings at lower field strengths

    Methods for Collecting Milk from Mice

    Get PDF
    Mouse models offer unique opportunities to study mammary gland biology and lactation. Phenotypes within the mammary glands, especially those caused by genetic modification, often arise during lactation, and their study requires the collection of adequate volumes of milk. We describe two approaches for collecting milk from lactating mice. Both methods are inexpensive, are easy to use in the laboratory or classroom, are non-invasive, and yield adequate volumes of milk for subsequent analyses

    Lone Atrial Fibrillation Is Associated With Impaired Left Ventricular Energetics That Persists Despite Successful Catheter Ablation

    Get PDF
    Background: Lone atrial fibrillation (AF) may reflect a subclinical cardiomyopathy that persists after sinus rhythm (SR) restoration, providing a substrate for AF recurrence. To test this hypothesis, we investigated the effect of restoring SR by catheter ablation on left ventricular (LV) function and energetics in patients with AF but no significant comorbidities. Methods: Fifty-three patients with symptomatic paroxysmal or persistent AF and without significant valvular disease, uncontrolled hypertension, coronary artery disease, uncontrolled thyroid disease, systemic inflammatory disease, diabetes mellitus, or obstructive sleep apnea (ie, lone AF) undergoing ablation and 25 matched control subjects in SR were investigated. Magnetic resonance imaging quantified LV ejection fraction (LVEF), peak systolic circumferential strain (PSCS), and left atrial volumes and function, whereas phosphorus-31 magnetic resonance spectroscopy evaluated ventricular energetics (ratio of phosphocreatine to ATP). AF burden was determined before and after ablation by 7-day Holter monitoring; intermittent ECG event monitoring was also undertaken after ablation to investigate for asymptomatic AF recurrence. Results: Before ablation, both LV function and energetics were significantly impaired in patients compared with control subjects (LVEF, 61% [interquartile range (IQR), 52%–65%] versus 71% [IQR, 69%–73%], P<0.001; PSCS, –15% [IQR, –11 to –18%] versus −18% [IQR, –17% to –19%], P=0.002; ratio of phosphocreatine to ATP, 1.81±0.35 versus 2.05±0.29, P=0.004). As expected, patients also had dilated and impaired left atria compared with control subjects (all P<0.001). Early after ablation (1–4 days), LVEF and PSCS improved in patients recovering SR from AF (LVEF, 7.0±10%, P=0.005; PSCS, –3.5±4.3%, P=0.001) but were unchanged in those in SR during both assessments (both P=NS). At 6 to 9 months after ablation, AF burden reduced significantly (from 54% [IQR, 1.5%–100%] to 0% [IQR 0%–0.1%]; P<0.001). However, LVEF and PSCS did not improve further (both P=NS) and remained impaired compared with control subjects (P<0.001 and P=0.003, respectively). Similarly, there was no significant improvement in atrial function from before ablation (P=NS), and this remained lower than in control subjects (P<0.001). The ratio of phosphocreatine to ATP was unaffected by heart rhythm during assessment and AF burden before ablation (both P=NS). It was unchanged after ablation (P=0.57), remaining lower than in control subjects regardless of both recovery of SR and freedom from recurrent AF (P=0.006 and P=0.002, respectively). Conclusions: Patients with lone AF have impaired myocardial energetics and subtle LV dysfunction, which do not normalize after ablation. These findings suggest that AF may be the consequence (rather than the cause) of an occult cardiomyopathy, which persists despite a significant reduction in AF burden after ablation

    Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals

    Get PDF
    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein
    corecore