98 research outputs found

    “I’m Their Bishop and I Need to Respond to Their Pain”

    Get PDF

    Navigating the Bylaw Maze in NCAA Major-Infractions Cases

    Get PDF

    Stereo optical guidance system for control of industrial robots

    Get PDF
    A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices

    Automated rendezvous and docking with video imagery

    Get PDF
    For rendezvous and docking, assessing and tracking relative orientation is necessary within a minimum approach distance. Special target light patterns have previously been considered for use with video sensors for ease of determining relative orientation. A generalization of those approaches is addressed. At certain ranges, the entire structure of the target vehicle constitutes an acceptable target; at closer ranges, substructures will suffice. Acting on the same principle as the human intelligence, these structures can be compared with a memory model to assess the relative orientation and range. Models for comparison are constructed from a CAD facet model and current imagery. This approach requires fast image handling, projection, and comparison techniques which rely on rapidly developing parallel processing technology. Relative orientation and range assessment consists of successful comparison of the perceived target aspect with a known aspect. Generating a known projection from a model within required times, say subsecond times, is only now approaching feasibility. With this capability, rates of comparison used by the human brain can be approached and arbitrary known structures can be compared in reasonable times. Future space programs will have access to powerful computation devices which far exceed even this capability. For example, the possibility will exist to assess unknown structures and then control rendezvous and docking, all at very fast rates. The first step which has the current utility, namely applying this to known structures, is taken

    Can Plants Save Money: A Look At The Biowall

    Get PDF
    The objective of this research was to design, demonstrate, and monitor the Biowall; a novel system for improving indoor air quality in a residential building, which has the potential to save energy compared to traditional air quality control. The Biowall was integrated into the heating, ventilation, and air-conditioning system of a high performance home and utilized plants as a passive filter system to remove volatile organic compounds from the interior space of the home. The testing environment in this study was a 984 square foot efficient residential home constructed for the U.S. Department of Energy Solar Decathlon 2011 competition. A number of sensors were installed in the home to monitor the operation of the wall including temperature, relative humidity, carbon dioxide, and total volatile organic compound (TVOC) sensors. The main outcomes of the project included the design and construction of a test platform for the current study and future research, energy results that showed as high as 160% ventilation energy savings over a 1 week test period and $170 per year in projected cost savings versus a traditional ventilation strategy, and lessons learned and suggestions for future research

    Myrica cerifera L.

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/21478/thumbnail.jp

    Point-Focus Concentration Compact Telescoping Array: EESP Option 1 Phase Final Report for Public Release

    Get PDF
    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC) and SolAero Technologies Corp., has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 1/25th the size of the lens. CTA stands for Compact Telescoping Array1, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018. The NASA Game Changing Development Extreme Environment Solar Power (EESP) Option 1 Phase study has enabled Orbital ATK to generate and refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL ~5. Key performance metrics currently projected are as follows: Scalability from 300 kW per wing (AM0); Specific Power > 250 W/kg (BoL, AM0); Stowage Efficiency > 60 kW/m3; 5:1 margin on pointing tolerance vs. capability; >50% launched cost savings; Wide range of operability between Venus and Saturn by active and/or passive thermal management

    Development of a β-Lactoglobulin sensor based on SPR for milk allergens detection

    Get PDF
    A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL−1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL−1 for β-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (KD), were equal to 2.59 × 10−9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing

    Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor

    Get PDF
    Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10–9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL–1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87–120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer

    Adaptive Water Resource Management for Taste and Odor Control for the Anderson Regional Joint Water System

    Get PDF
    2016 South Carolina Water Resources Conference South Carolina Water Resources at a Crossroads: Response, Readiness and Recover
    corecore