509 research outputs found

    Dendritic flux penetration in Pb films with a periodic array of antidots

    Full text link
    We explore the flux-jump regime in type-II Pb thin films with a periodic array of antidots by means of magneto-optical measurements. A direct visualization of the magnetic flux distribution allows to identify a rich morphology of flux penetration patterns. We determine the phase boundary H(T)H^*(T) between dendritic penetration at low temperatures and a smooth flux invasion at high temperatures and fields. For the whole range of fields and temperatures studied, guided vortex motion along the principal axes of the square pinning array is clearly observed. In particular, the branching process of the dendrite expansion is fully governed by the underlying pinning topology. A comparative study between macroscopic techniques and direct local visualization shed light onto the puzzling TT- and HH-independent magnetic response observed at low temperatures and fields. Finally, we find that the distribution of avalanche sizes at low temperatures can be described by a power law with exponent τ0.9(1)\tau \sim 0.9(1)

    Confidence Investigation of Discovering Organizational Network Structures Using Transfer Entropy

    Get PDF
    Transfer entropy has long been used to discover network structures and relationships based on the behavior of nodes in the system, especially for complex adaptive systems. Using the fact that organizations often behave as complex adaptive systems, transfer entropy can be applied to discover the relationships and structure within an organizational network. The organizational structures are built using a model developed by Dodd, Watts, et al, and a simulation method for complex adaptive supply networks is used to create node behavior data. The false positive rate and true positive rates are established for various organizational structures and compared to a basic tree. This study provides a baseline understanding for the accuracy that can be expected when discovering organizational networks using these techniques. It also highlights conditions in which it may be more difficult to successfully discover a network structure using transfer entropy and bounds confidence levels for practitioners of such methods

    Confidence Investigation of Discovering Organizational Network Structures Using Transfer Entropy

    Get PDF
    Transfer entropy has long been used to discover network structures and relationships based on the behavior of nodes in the system, especially for complex adaptive systems. Using the fact that organizations often behave as complex adaptive systems, transfer entropy can be applied to discover the relationships and structure within an organizational network. The organizational structures are built using a model developed by Dodd, Watts, et al, and a simulation method for complex adaptive supply networks is used to create node behavior data. The false positive rate and true positive rates are established for various organizational structures and compared to a basic tree. This study provides a baseline understanding for the accuracy that can be expected when discovering organizational networks using these techniques. It also highlights conditions in which it may be more difficult to successfully discover a network structure using transfer entropy and bounds confidence levels for practitioners of such methods

    Using Information-theoretic Principles to Analyze and Evaluate Complex Adaptive Supply Network Architectures

    Get PDF
    Information-theoretic principles can be applied to the study of complex adaptive supply networks (CASN). Previous modeling efforts of CASN were impeded by the complex, dynamic nature of the systems. However, information theory provides a model-free approach to the problem removing many of those barriers. Understanding how principles such as transfer entropy, excess entropy/predictive information, information storage, and separable information apply in the context of supply networks opens up new ways of studying these complex systems. Additionally, these principles provide the potential for new business analytics which give managers of CASN new insights into the system\u27s health, behavior, and eventual control strategies

    FcRn-mediated antibody transport across epithelial cells revealed by electron tomography

    Get PDF
    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0–6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient unidirectional transport of IgG, because FcRn binds IgG at pH 6.0–6.5 but not at pH 7 or more. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a nonperturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking

    p56lck Signals for Regulating Thymocyte Development Can Be Distinguished by Their Dependency on Rho Function

    Get PDF
    The tyrosine kinase p56lck regulates the differentiation and proliferative expansion of pre-T cells. However, nothing is known about other signaling molecules that operate with p56lck to mediate the pleiotropic changes that occur at this stage of thymocyte development. We used a genetic strategy to examine the requirement for the GTPase Rho in p56lck-mediated signals in the thymus. By generating mice double transgenic for a constitutively activated form of p56lck (p56lckF505) and the Rho inhibitor C3 transferase we were able to compare thymocyte development in mice expressing active p56lck on a wild-type or Rho− background. Thymocytes expressing active p56lck show enhanced proliferation of pre-T cells resulting in increased numbers of late pre-T cells, however, this dramatic effect on pre-T cell proliferation is lost when the p56lck transgene is expressed in thymocytes lacking endogenous Rho GTPase function. Expression of active p56lck also generates double positive (DP) thymocytes with low levels of CD2 antigen expression. Again, p56lck cannot prevent expression of CD2 when expressed on a Rho− background. CD4+CD8+ DP cells expressing active p56lck have been shown to lack functional α/β–T cell receptor (TCR) complexes due to p56lck-mediated inhibition of TCR gene Vβ-Dβ rearrangement. This inhibition of TCR expression by active p56lck is unimpaired in the absence of Rho function. The signaling pathways that are mediated by p56lck and control thymocyte proliferation, α/β-TCR and CD2 antigen expression can thus be distinguished by their dependency on Rho function

    Positive relationships between association strength and phenotypic similarity characterize the assembly of mixed-species bird flocks worldwide

    Get PDF
    Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly

    A novel aspect of the structure of the avian thymic medulla.

    Get PDF
    We provide evidence for the compartmentalization of the avian thymic medulla and identify the avian thymic dendritic cell. The thymic anlage develops from an epithelial cord of the branchial endoderm. Branches of the cord are separated by primary septae of neural crest origin. The dilation of the primary septae produces the keratin-negative area (KNA) of the thymic medulla and fills the gaps of the keratin-positive network (KPN). Morphometric analysis indicates that the KNA takes up about half of the volume of the thymic medulla, which has reticular connective tissue, like peripheral lymphoid organs. The KNA receives blood vessels and in addition to pericytes, the myoid cells of striated muscle structure occupy this area. The myoid cells are of branchial arch or prechordal plate origin providing indirect evidence for the neural crest origin of the KNA. The marginal epithelial cells of the KPN co-express keratin and vimentin intermediate filaments, which indicate their functional peculiarity. The basal lamina of the primary septum is discontinuous on the surface of the KPN providing histological evidence for the loss of the blood-thymus barrier in the medulla. In the center of the KNA, the dendritic cells lie in close association with blood vessels, whereas the B-cells accumulate along the KPN. The organization of the KPN and KNA increases the "surface" of the so-called cortico-medullary border, thereby contributing to the efficacy of central tolerance

    Research of working area development parameters in conditions of deep steep deposit finalizing

    Get PDF
    Отримано формули розрахунку об’єму запасів корисних копалин в приконтурній та глибинній зоні. Встановлено характер впливу параметрів доробки глибоких крутоспадних родовищ відкритим способом на доцільне положення поточних та проектних контурів кар’єру. Встановлено, що найменший середній коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу в проектному положенні. Найменший поточний коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу, а також робочого борту кар'єру в поточному положенні

    Avian Use of Perennial Biomass Feedstocks as Post-Breeding and Migratory Stopover Habitat

    Get PDF
    Increased production of biomass crops in North America will require new agricultural land, intensify the cultivation of land already under production and introduce new types of biomass crops. Assessing the potential biodiversity impacts of novel agricultural systems is fundamental to the maintenance of biodiversity in agricultural landscapes, yet the consequences of expanded biomass production remain unclear. We evaluate the ability of two candidate second generation biomass feedstocks (switchgrass, Panicum virgatum, and mixed-grass prairie) not currently managed as crops to act as post-breeding and fall migratory stopover habitat for birds. In total, we detected 41 bird species, including grassland specialists and species of state and national conservation concern (e.g. Henslow's Sparrow, Ammodramus henslowii). Avian species richness was generally comparable in switchgrass and prairie and increased with patch size in both patch types. Grassland specialists were less abundant and less likely to occur in patches within highly forested landscapes and were more common and likely to occur in larger patches, indicating that this group is also area-sensitive outside of the breeding season. Variation in the biomass and richness of arthropod food within patches was generally unrelated to richness and abundance metrics. Total bird abundance and that of grassland specialists was higher in patches with greater vegetation structural heterogeneity. Collectively, we find that perennial biomass feedstocks have potential to provide post-breeding and migratory stopover habitat for birds, but that the placement and management of crops will be critical factors in determining their suitability for species of conservation concern. Industrialization of cellulosic bioenergy production that results in reduced crop structural heterogeneity is likely to dramatically reduce the suitability of perennial biomass crops for birds
    corecore