117 research outputs found

    Widespread Immunological Functions of Mast Cells: Fact or Fiction?

    Get PDF
    Immunological functions of mast cells are currently considered to be much broader than the original role of mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, microbial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system, has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we consider the implications of these recent developments for the state of the field as well as for future work, aiming at deciphering the physiological functions of mast cells

    Molecular mechanism of mast cell–mediated innate defense against endothelin and snake venom sarafotoxin

    Get PDF
    Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity

    The helminth T2 RNase v1 promotes metabolic homeostasis in an IL-33– and group 2 innate lymphoid cell–dependent mechanism

    Get PDF
    Induction of a type 2 cellular response in the white adipose tissue leads to weight loss and improves glucose homeostasis in obese animals. Injection of obese mice with recombinant helminth-derived Schistosoma mansoni egg-derived v1 (v1), a potent inducer of type 2 activation, improves metabolic status involving a mechanism reliant upon release of the type 2 initiator cytokine IL-33. IL-33 initiates the accumulation of group 2 innate lymphoid cells (ILC2s), eosinophils, and alternatively activated macrophages in the adipose tissue. IL-33 release from cells in the adipose tissue is mediated by the RNase activity of v1; however, the ability of v1 to improve metabolic status is reliant upon effective binding of v1 to CD206. We demonstrate a novel mechanism for RNasemediated release of IL-33 inducing ILC2-dependent improvements in the metabolic status of obese animals.— Hams, E., Bermingham, R., Wurlod, F. A., Hogan, A. E., O’Shea, D., Preston, R. J., Rodewald, H.-R., McKenzie, A. N. J., Fallon, P. G. The helminth T2 RNase v1 promotes metabolic homeostasis in an IL-33– and group 2 innate lymphoid cell–dependent mechanism

    Stem Cells and Aging:What's Next?

    Get PDF
    We asked 12 leaders in the stem cell and aging fields to share their personal perspectives on the future of the field and the unanswered questions that drive them to work in this exciting area

    Mast cells partly contribute to allergic enteritis development: Findings in two different mast cell-deficient mice

    Get PDF
    Allergic enteritis (AE) is a gastrointestinal form of food allergy. The presence of mast cells and granulocytes has been detected in the inflamed tissues in AE. In this study, we aimed to elucidate the role of mast cells in AE development using two mast cell-deficient mouse strains: KIT(W-sh/W-sh) bearing the W-sash (W(sh)) inversion mutation and Cpa3Cre/+, which lack mast cells due to Cre-mediated mast cell eradication, were used in an AE experimental model. The development of clinical symptoms (e.g. drop in body temperature and weight loss) were abolished in both strains, whereas inflammatory levels of AE (e.g. villous atrophy, edema, and granulocyte accumulation) were reduced mainly in KITW-sh/W-sh mice. FACS analysis of the KITW-sh/W-sh intestinal lamina propria, showed a reduction in the eosinophil (CD45+CD11b+SiglecF+cells) and neutrophil (CD45+CD11b+SiglecF−Ly6G+ cells) accumulation. Cpa3Cre/+ mice showed reduced eosinophil (CD45+CD11b+SiglecF+cells) accumulation, but neutrophil (CD45+CD11b+SiglecF−Ly6G+ cells) accumulation was retained at AE sites. The concentrations of CC chemokine ligand 1 (CCL1), a known CC chemokine receptor 8 ligand leading to eosinophil recruitment, was reduced in intestinal homogenates of both mast cell-deficient mouse strains. These results suggest that mast cells play a role in AE development in part by expressing CCL1 and contributing to eosinophil accumulation at AE. This study offers implications for establishing AE treatments that target infiltrating leucocytes in AE tissues.Fil: Blanco PĂ©rez, Frank. No especifĂ­ca;Fil: Gonzalez Menendez, Irene. No especifĂ­ca;Fil: Stassen, Michael. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Kato, Yoichiro. Tokyo Women's Medical University; JapĂłnFil: Laiño, Jonathan Emiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Centro de Referencia para Lactobacilos; ArgentinaFil: Kirberg, Jörg. No especifĂ­ca;Fil: Krause, Maren. No especifĂ­ca;Fil: Martella, Manuela. No especifĂ­ca;Fil: Shibata, Noriyuki. Tokyo Women's Medical University; JapĂłnFil: Quintanilla-Martinez, Leticia. No especifĂ­ca;Fil: Feyerabend, Thorsten B.. No especifĂ­ca;Fil: Rodewald, Hans Reimer. No especifĂ­ca;Fil: Galli, Stephen J.. University of Stanford; Estados UnidosFil: Vieths, Stefan. No especifĂ­ca;Fil: Scheurer, Stephan. No especifĂ­ca;Fil: Toda, Masako. No especifĂ­ca

    Type-2 innate lymphoid cells control the development of atherosclerosis in mice.

    Get PDF
    Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet
    • 

    corecore